Skip to main content

Irinotecan

Current Clinical Status and Pharmacological Aspects

  • Chapter
Camptothecins in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Irinotecan (Fig. 1), also known as CPT-11, is a semisynthetic derivative of 20(S)camptothecin (1), a pentacyclic alkaloid first identified in extracts of the Chinese shrub Camptotheca acuminata. The mechanism of action of camptothecin has been covered in other chapters of this book and need not be revisited here. However, it is pertinent to point out that CPT-11 itself is only a very weak stabilizer of the cleavable complex formed between DNA and topoisomerase I (TOP-I) and requires conversion to an active metabolite, SN-38 (2). The latter is one of the most potent TOP-I poisons known, which may be a result of the prolonged half-life of interaction with the cleavable complex (3). In vivo, the activation of CPT-11 to SN-38 is carried out by carboxylesterases (48). In turn, SN-38 can be conjugated to SN-38 β-glucuronide (9,10). CPT-11 is also metabolized to an aminopentanocarboxylic (APC), metabolite (see Fig. 1), and other minor, mostly inactive, products by cytochrome P450 3A4/5 (1114).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sawada S, Okajima S, Aiyama R, et al. 1991Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin. Chem Pharm Bull. 39: 1446–1450.

    Google Scholar 

  2. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. 1991 Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 51:4187–4191.

    Google Scholar 

  3. Tanizawa A, Fujimori A, Fujimori Y, Pommier Y. 1994 Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst. 86:836–842.

    Google Scholar 

  4. Tsuji T, Kaneda N, Kado K, Yokokura T, Yoshimoto T, Tsuru D. 1991 CPT-11 converting enzyme from rat serum: purification and some properties. J Pharmacobiodyn. 14:341–349.

    Google Scholar 

  5. Rivory LP, Bowles MR, Robert J, Pond SM. 1996 Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol. 52:1103–1111.

    Google Scholar 

  6. Satoh T, Hosokawa M, Atsumi R, Suzuki W, Hakusui H, Nagai E. 1994 Metabolic activation of CPT-11, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyl-oxycamptothecin, a novel antitumor agent, by carboxylesterase. Biol Pharm Bull. 17:662–664.

    Google Scholar 

  7. Slatter JG, Su P, Sams JP, Schaaf LJ, Wienkers LC. 1997 Bioactivation of the anticancer agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Drug Metab Dispos. 25:1157–1164.

    Google Scholar 

  8. Haaz MC, Rivory LP, Riche C, Robert J. 1997 The transformation of irinotecan (CPT-11) to its active metabolite SN-38 by human liver microsomes. Differential hydrolysis for the lactone and carboxylate forms. Naunyn Schmiedebergs Arch Pharmacol. 356:257–262.

    Google Scholar 

  9. Atsumi R, Suzuki W, Hakusui H. 1991 Identification of the metabolites of irinotecan, a new derivative of camptothecin, in rat bile and its biliary excretion. Xenobiotica. 21:1159–1169.

    Google Scholar 

  10. Haaz MC, Rivory L, Jantet S, Ratanasavanh D, Robert J. 1997 Glucuronidation of SN-38, the active metabolite of irinotecan, by human hepatic microsomes. Pharmacol Toxicol. 80:91–96.

    Google Scholar 

  11. Santos A, Zanetta S, Cresteil T, et al. 2000 Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res. 6:2012–2020.

    Google Scholar 

  12. Haaz MC, Rivory L, Riche C, Vernillet L, Robert J. 1998 Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res. 58:468–472.

    Google Scholar 

  13. Rivory LP, Riou JF, Haaz MC, et al. 1996 Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Res. 56:3689–3694.

    Google Scholar 

  14. Haaz MC, Riche C, Rivory LP, Robert J. 1998 Biosynthesis of an aminopiperidino metabolite of irinotecan [7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyl-oxycamptothecine] by human hepatic microsomes. Drug Metab Dispos. 26:769–774.

    Google Scholar 

  15. Rothenberg ML, Cox JV, DeVore RF, et al. 1999 A multicenter, phase II trial of weekly irinotecan (CPT-11) in patients with previously treated colorectal carcinoma. Cancer. 85:786–795.

    Google Scholar 

  16. Rothenberg ML, Eckardt JR, Kuhn JG, et al. 1996 Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol. 14:1128–1135.

    Google Scholar 

  17. Rougier P, Bugat R, Douillard JY, et al. 1997 Phase II study of irinotecan in the treatment of advanced colorectal cancer in chemotherapy-naive patients and patients pretreated with fluorouracil-based chemotherapy. J Clin Oncol. 15:251–260.

    Google Scholar 

  18. Pitot HC, Wender DB, O’Connell MJ, et al. 1997 Phase II trial of irinotecan in patients with metastatic colorectal carcinoma. J Clin Oncol. 15:2910–2919.

    Google Scholar 

  19. Cunningham D, Pyrhonen S, James RD, et al. 1998 Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet. 352: 1413–1418.

    Google Scholar 

  20. Douillard JY, Cunningham D, Roth AD, et al. 2000 Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 355:1041–1047.

    Google Scholar 

  21. Saltz LB, Cox JV, Blanke C, et al. 2000 Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. New Engl J Med. 343:905–914.

    Google Scholar 

  22. Shimada Y, Yoshino M, Wakui A, et al. 1993 Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. J Clin Oncol. 11:909–913.

    Google Scholar 

  23. Shimada Y, Rougier P, Pitot H. 1996 Efficacy of CPT-11 (irinotecan) as a single agent in metastatic colorectal cancer. Eur J Cancer. 32A(Suppl. 3):S13–S17.

    Google Scholar 

  24. Rothenberg ML, Kuhn JG, Schaaf LJ, et al. 1998 Alternative dosing schedules for irinotecan. Oncology. 12:68–71.

    Google Scholar 

  25. Abigerges D, Chabot GG, Armand JP, Herait P, Gouyette A, Gandia D. 1995 Phase I and pharmacologic studies of the camptothecin analog irinotecan administered every 3 weeks in cancer patients. J Clin Oncol. 13: 210–221.

    Google Scholar 

  26. Rowinsky EK, Grochow LB, Ettinger DS, et al. 1994 Phase I and pharmacological study of the novel topoisomerase I inhibitor 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) administered as a ninety-minute infusion every 3 weeks. Cancer Res. 54:427–436.

    Google Scholar 

  27. Merrouche Y, Extra JM, Abigerges D, et al. 1997 High dose-intensity of irinotecan administered every 3 weeks in advanced cancer patients: a feasibility study. J Clin Oncol. 15:1080–1086.

    Google Scholar 

  28. Rothenberg ML, Kuhn JG, Burris HA, et al. 1993 Phase I and pharmacokinetic trial of weekly CPT-11. J Clin Oncol. 11:2194–2204.

    Google Scholar 

  29. de Forni M, Bugat R, Chabot GG, et al. 1994 Phase I and pharmacokinetic study of the camptothecin derivative irinotecan, administered on a weekly schedule in cancer patients. Cancer Res. 54:4347–4354.

    Google Scholar 

  30. Tsuda H, Takatsuki K, Ohno R, et al. 1994 Treatment of adult T-cell leukaemialymphoma with irinotecan hydrochloride (CPT-11). CPT-11 Study Group on Hematological Malignancy. Br J Cancer. 70:771–774.

    Google Scholar 

  31. Catimel G, Chabot GG, Guastalla JP, et al. 1995 Phase I and pharmacokinetic study of irinotecan (CPT-11) administered daily for three consecutive days every three weeks in patients with advanced solid tumors. Ann Oncol. 6:133–140.

    Google Scholar 

  32. Ohe Y, Sasaki Y, Shinkai T, et al. 1992 Phase I study and pharmacokinetics of CPT-11 with 5-day continuous infusion. J Natl Cancer Inst. 84:972–974.

    Google Scholar 

  33. Ohno R, Okada K, Masaoka T, et al. 1990 An early phase II study of CPT-11: a new derivative of camptothecin, for the treatment of leukemia and lymphoma. J Clin Oncol. 8:1907–1912.

    Google Scholar 

  34. Conti JA, Kemeny NE, Saltz LB, et al. 1996 Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol. 14:709–715.

    Google Scholar 

  35. Armand JP, Ducreux M, Mahjoubi M, et al. 1995 CPT-11 (irinotecan) in the treatment of colorectal cancer. Eur J Cancer. 31A:1283–1287.

    Google Scholar 

  36. Abigerges D, Armand JP, Chabot GG, et al. 1994 Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J Natl Cancer Inst. 86:446–449.

    Google Scholar 

  37. Drengler RL, Kuhn JG, Schaaf LJ, et al. 1999 Phase I and pharmacokinetic trial of oral irinotecan administered daily for 5 days every 3 weeks in patients with solid tumors. J Clin Oncol. 17:685–696.

    Google Scholar 

  38. Pitot H, Adjei AA, Reid JM, et al. 2001 A phase I and pharmacokinetic study of a powder-filled capsule (PFC) formulation of oral irinotecan (CPT-11) given daily for 5 days every 3 weeks in patients with advanced solid tumors [abstract]. Proc Am Soc Clin Oncol. 20:102a.

    Google Scholar 

  39. Van Cutsem E, Cunningham D, Ten Bokkel Huinink WW, et al. 1999 Clinical activity and benefit of irinotecan (CPT-11) in patients with colorectal cancer truly resistant to 5-fluorouracil (5-FU). Eur J Cancer. 35: 54–59.

    Google Scholar 

  40. Allen M, Cunningham D, Schmitt C. 1998 The importance of stabilization as an endpoint in the treatment of metastatic colorectal carcinoma: recent quality of life studies. Anti-Cancer Drugs. 9:783–790.

    Google Scholar 

  41. Cunningham D, Glimelius B. 1999 A phase III study of irinotecan (CPT-11) versus best supportive care in patients with metastatic colorectal cancer who have failed 5-fluorouracil therapy. V301 Study Group. Semin Oncol. 26:6–12.

    Google Scholar 

  42. Rougier P, Van Cutsem E, Bajetta E, et al. 1998 Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet. 352: 1407–1412.

    Google Scholar 

  43. Iveson TJ, Hickish T, Schmitt C, Van Cutsem E. 1999 Irinotecan in second-line treatment of metastatic colorectal cancer: improved survival and cost-effect compared with infusional 5-FU. Eur J Cancer. 35: 1796–1804.

    Google Scholar 

  44. Levy-Piedbois C, Durand-Zaleski I, Juhel H, Schmitt C, Bellanger A, Piedbois P. 2000 Cost-effectiveness of second-line treatment with irinotecan or infusional 5-fluorouracil in metastatic colorectal cancer. Ann Oncol. 11:157–161.

    Google Scholar 

  45. Schmitt C, Blijham G, Jolain B, Rougier P, Van Cutsem E. 1999 Medical care consumption in a phase III trial comparing irinotecan with infusional 5-fluorouracil (5-FU) in patients with metastatic colorectal cancer after 5-FU failure. Anti-Cancer Drugs. 10:617–623.

    Google Scholar 

  46. Ducreux M, Ychou M, Seitz JF, et al. 1999 Irinotecan combined with bolus fluorouracil, continuous infusion fluorouracil, and high-dose leucovorin every two weeks (LV5FU2 regimen): a clinical dose-finding and pharmacokinetic study in patients with pretreated metastatic colorectal cancer. J Clin Oncol. 17:2901–2908.

    Google Scholar 

  47. Goldberg RM, Erlichman C. 1998 Irinotecan plus 5-FU and leucovorin in advanced colorectal cancer: North American trials. Oncology. 12:59–63.

    Google Scholar 

  48. Fuchs C, Miller L, Moore M, et al. 2000 Phase III comparison of two CPT-11 dosing regimens (weekly x 4 every-6-weeks Vs every-3-weeks) in second-line colorectal cancer (CRC) therapy: interim safety report [abstract]. Proc Am Soc Clin Oncol. 19:255a.

    Google Scholar 

  49. Freyer G, Rougier P, Bugat R, et al. 2000 Prognostic factors for tumour response, progression-free survival and toxicity in metastatic colorectal cancer patients given irinotecan (CPT-11) as second-line chemotherapy after 5FU failure. CPT-11 F205, F220, F221 and V222 study groups. Br J Cancer. 83:431–437.

    Google Scholar 

  50. Ychou M, Kramar A, Raoul J, et al. 2000 Final results of a study using CPT-11 high dose (500 mg/m2) as first line chemotherapy in patients with metastatic colorectal cancer (MCRC) [abstract]. Proc Am Soc Clin Oncol. 19: 249a.

    Google Scholar 

  51. Ford HE, Cunningham D, Ross PJ, et al. 2000 Phase I study of irinotecan and raltitrexed in patients with advanced gastrointestinal tract adenocarcinoma. Br J Cancer. 83:146–152.

    Google Scholar 

  52. Wasserman E, Cuvier C, Lokiec F, et al. 1999 Combination of oxaliplatin plus irinotecan in patients with gastrointestinal tumors: results of two independent phase I studies with pharmacokinetics. J Clin Oncol. 17: 1751–1759.

    Google Scholar 

  53. Hejna M, Kostler WJ, Raderer M, et al. 2000 Phase II study of second-line oxaliplatin, irinotecan and mitomycin C in patients with advanced or metastatic colorectal cancer. Anti-Cancer Drugs. 11:629–634.

    Google Scholar 

  54. Scheithauer W, Kornek GV, Raderer M, et al. 1999 Combined irinotecan and oxaliplatin plus granulocyte colony-stimulating factor in patients with advanced fluoropyrimidine/leucovorin-pretreated colorectal cancer. J Clin Oncol. 17:902–906.

    Google Scholar 

  55. Boku N, Ohtsu A, Shimada Y, et al. 1999 Phase II study of a combination of irinotecan and cisplatin against metastatic gastric cancer. J Clin Oncol. 17:319–323.

    Google Scholar 

  56. Shirao K, Shimada Y, Kondo H, et al. 1997 Phase I-II study of irinotecan hydrochloride combined with cisplatin in patients with advanced gastric cancer. J Clin Oncol. 15:921–927.

    Google Scholar 

  57. Rocha Lima CM, Sherman CA, Brescia FJ, Brunson CY, Green MR. 2001 Irinotecan/gemcitabine combination chemotherapy in pancreatic cancer. Oncology. 15:46–51.

    Google Scholar 

  58. Sanz-Altamira P, O’Reilly EM, Stuart K, et al. 2001 A phase II trial of irinotecan (CPT-11) for unresectable biliary tree carcinoma. Ann Oncol. 12:501–504.

    Google Scholar 

  59. O’Reilly EM, Stuart K, Sanz-Altamira P, et al. 2001 A phase II study of irinotecan in patients with advanced hepatocellular carcinoma. Cancer. 91:101–105.

    Google Scholar 

  60. Fukuoka M, Niitani H, Suzuki A, et al. 1992 A phase II study of CPT-11, a new derivative of camptothecin, for previously untreated non-small-cell lung cancer. J Clin Oncol. 10:16–20.

    Google Scholar 

  61. Masuda N, Fukuoka M, Kusunoki Y, et al. 1992 CPT-11: a new derivative of camptothecin for the treatment of refractory or relapsed small-cell lung cancer. J Clin Oncol. 10:1225–1229.

    Google Scholar 

  62. Masuda N, Fukuoka M, Takada M, et al. 1992 CPT-11 in combination with cisplatin for advanced non-small-cell lung cancer. J Clin Oncol. 10:1775–1780.

    Google Scholar 

  63. Nakanishi Y, Takayama K, Takano K, et al. 1999 Second-line chemotherapy with weekly cisplatin and irinotecan in patients with refractory lung cancer. Am J Clin Oncol. 22:399–402.

    Google Scholar 

  64. Fujita A, Takabatake H, Tagaki S, Sekine K. 2000 Phase I/II study of cisplatin, ifosfamide and irinotecan with rhG-CSF support in patients with stage IIIB and IV non-small-cell lung cancer. Cancer Chemother Pharmacol. 45:279–283.

    Google Scholar 

  65. Omura M, Torigoe S, Kubota N. 1997 SN-38, a metabolite of the camptothecin derivative CPT-11, potentiates the cytotoxic effect of radiation in human colon adenocarcinoma cells grown as spheroids. Radiother Oncol. 43: 197–201.

    Google Scholar 

  66. Chen AY, Okunieff P, Pommier Y, Mitchell JB. 1997 Mammalian DNA topoisomerase I mediates the enhancement of radiation cytotoxicity by camptothecin derivatives. Cancer Res. 57:1529–1536.

    Google Scholar 

  67. Boothman DA, Wang M, Schea RA, Burrows HL, Strickfaden S, Owens JK. 1992 Posttreatment exposure to camptothecin enhances the lethal effects of x-rays on radioresistant human malignant melanoma cells. Int J Rad Oncol Biol Phys. 24:939–948.

    Google Scholar 

  68. Takeda K, Negoro S, Kudoh S, et al. 1999 Phase I/II study of weekly irinotecan and concurrent radiation therapy for locally advanced non-small cell lung cancer. Br J Cancer. 79:1462–1467.

    Google Scholar 

  69. Yamada M, Kudoh S, Hirata K, Nakajima T, Yoshikawa J. 1998 Risk factors of pneumonitis following chemoradiotherapy for lung cancer. Eur J Cancer. 34:71–75.

    Google Scholar 

  70. Masuda N, Matsui K, Negoro S, et al. 1998 Combination of irinotecan and etoposide for treatment of refractory or relapsed small-cell lung cancer. J Clin Oncol. 6:3329–3334.

    Google Scholar 

  71. Masuda N, Negoro S, Kudoh S, et al. 2000 Phase I and pharmacologic study of docetaxel and irinotecan in advanced non-small-cell lung cancer. J Clin Oncol. 18:2996–3003.

    Google Scholar 

  72. Adjei AA, Klein CE, Kastrissios H, et al. 2000 Phase I and pharmacokinetic study of irinotecan and docetaxel in patients with advanced solid tumors: preliminary evidence of clinical activity. J Clin Oncol. 18: 1116–1123.

    Google Scholar 

  73. Natale RB, Socinski M, Sandler A, Israel VP, Miller L. 2000 Phase I/II trial of irinotecan, carboplatin, and paclitaxel in advanced or metastatic NSCLC. Oncology. 14:29–34.

    Google Scholar 

  74. Friedman HS, Petros WP, Friedman AH, et al. 1999 Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol. 17:1516–1525.

    Google Scholar 

  75. Castellino RC, Elion GB, Keir ST, et al. 2000 Schedule-dependent activity of irinotecan plus BCNU against malignant glioma xenografts [published erratum appears in Cancer Chemother Pharmacol 2000;46(1):84]. Cancer Chemother Pharmacol. 45:345–349.

    Google Scholar 

  76. Coggins CA, Elion GB, Houghton PJ, et al. 1998 Enhancement of irinotecan (CPT-11) activity against central nervous system tumor xenografts by alkylating agents. Cancer Chemother Pharmacol. 41:485–490.

    Google Scholar 

  77. Patel V, Elion G, Houghton P, et al. 2000 Schedule-dependent activity of temozolomide plus CPT-11 against a human central nervous system tumor-derived xenograft. Clin Cancer Res. 6:4154–4157.

    Google Scholar 

  78. Lhomme C, Fumoleau P, Fargeot P, et al. 1999 Results of a European Organization for Research and Treatment of Cancer/Early Clinical Studies Group phase II trial of first-line irinotecan in patients with advanced or recurrent squamous cell carcinoma of the cervix. J Clin Oncol. 17:3136–3142.

    Google Scholar 

  79. Verschraegen CF, Levy T, Kudelka AP, et al. 1997 Phase II study of irinotecan in prior chemotherapy-treated squamous cell carcinoma of the cervix. J Clin Oncol. 15:625–631.

    Google Scholar 

  80. Rosen LS. 1998 Irinotecan in lymphoma, leukemia, and breast, pancreatic, ovarian, and small-cell lung cancers. Oncology. 12:103–109.

    Google Scholar 

  81. Blaney S, Berg SL, Pratt C, et al. 2001 A phase I study of irinotecan in pediatric patients: a pediatric oncology group study. Clin Cancer Res. 7:32–37.

    Google Scholar 

  82. Vassal G, Droz F, Frappaz D, et al. 1999 A phase I trial of irinotecan (CPT-11) in children [abstract]. Proc Am Soc Clin Oncol. 18:563a.

    Google Scholar 

  83. Vassal G, Pondarre C, Boland I, et al. 1998 Preclinical development of camptothecin derivatives and clinical trials in pediatric oncology. Biochimie. 80:271–280.

    Google Scholar 

  84. Niwa K, Misao R, Hanabayashi T, et al. 1994 Semi-quantitative analysis of DNA topoisomerase-I mRNA level using reverse transcription-polymerase chain reaction in cancer cell lines: its relation to cytotoxicity against camptothecin derivative. Jpn J Cancer Res. 85:869–874.

    Google Scholar 

  85. Giovanella BC, Stehlin JS, Wall ME, et al. 1989 DNA topoisomerase I-targeted chemotherapy of human colon cancer in xenografts. Science. 246:1046–1048.

    Google Scholar 

  86. Goldwasser F, Bae I, Valenti M, Torres K, Pommier Y. 1995 Topoisomerase Irelated parameters and camptothecin activity in the colon carcinoma cell lines from the National Cancer Institute anticancer screen. Cancer Res. 55:2116–2121.

    Google Scholar 

  87. Husain I, Mohler JL, Seigler HF, Besterman JM. 1994 Elevation of topoisomerase I messenger RNA, protein, and catalytic activity in human tumors: demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer Res. 54:539–546.

    Google Scholar 

  88. McLeod HL, Keith WN. 1996 Variation in topoisomerase I gene copy number as a mechanism for intrinsic drug sensitivity. Br J Cancer. 74:508–512.

    Google Scholar 

  89. McLeod HL, Douglas F, Oates M, et al. 1994 Topoisomerase I and II activity in human breast, cervix, lung and colon cancer. Int J Cancer. 59:607–611.

    Google Scholar 

  90. Guichard S, Terret C, Hennebelle I, et al. 1999 CPT-11 converting carboxylesterase and topoisomerase activities in tumour and normal colon and liver tissues. Br J Cancer. 80:364–370.

    Google Scholar 

  91. Abbruzzese JL, Madden T, Sugarman SM, et al. 1996 Phase I clinical and plasma and cellular pharmacological study of topotecan without and with granulocyte colony-stimulating factor. Clin Cancer Res. 2:1489–1497.

    Google Scholar 

  92. Danks MK, Garrett KE, Marion RC, Whipple DO. 1996 Subcellular redistribution of DNA topoisomerase I in anaplastic astrocytoma cells treated with topotecan. Cancer Res. 56:1664–1673.

    Google Scholar 

  93. Desai SD, Liu LF, Vazquez-Abad D, D’Arpa P. 1997 Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem. 272:24159–24164.

    Google Scholar 

  94. Salonga D, Danenberg KD, Johnson M, et al. 2000 Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res. 6:1322–1327.

    Google Scholar 

  95. Johnston PG, Lenz HJ, Leichman CG, et al. 1995 Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res. 55: 1407–1412.

    Google Scholar 

  96. Rivory LP, Robert J. 1995 Molecular, cellular, and clinical aspects of the pharmacology of 20(S)camptothecin and its derivatives. Pharmacol Ther. 68:269–296.

    Google Scholar 

  97. Guemei A, Cottrell J, Band R, et al. 2001 Human plasma carboxylesterase and butyrylcholinesterase enzyme activity: correlations with SN-38 pharmacokinetics during a prolonged infusion of irinotecan. Cancer Chemother Pharmacol. 47:283–290.

    Google Scholar 

  98. Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME. 2000 Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res. 60:1189–1192.

    Google Scholar 

  99. Rivory LP. 2000 Metabolism of CPT-11. Impact on activity. Ann N Y Acad Sci. 922:205–215.

    Google Scholar 

  100. Ahmed F, Vyas V, Cornfield A, et al. 1999 In vitro activation of irinotecan to SN-38 by human liver and intestine. Anticancer Res. 19:2067–2071.

    Google Scholar 

  101. Kaneda N, Nagata H, Furuta T, Yokokura T. 1990 Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res. 50:1715–1720.

    Google Scholar 

  102. Onishi Y, Oguro M, Kizaki H. 1997 A lymphoma cell line resistant to 4-piperidinopiperidine was less sensitive to CPT-11. Cancer Chemother Pharmacol. 39:473–478.

    Google Scholar 

  103. Dodds H, Clarke S, Findlay M, Bishop J, Robert J, Rivory L.2000 Clinical pharmacokinetics of the irinotecan metabolite 4-piperidinopiperidine and its possible clinical importance. Cancer Chemother Pharmacol. 45: 9–14.

    Google Scholar 

  104. Rivory LP, Haaz MC, Canal P, Lokiec F, Armand JP, Robert J. 1997 Pharmacokinetic interrelationships of irinotecan (CPT-11) and its three major plasma metabolites in patients enrolled in phase I/II trials. Clin Cancer Res. 3:1261–1266.

    Google Scholar 

  105. Sparreboom A, de Jonge MJ, de Bruijn P, et al. 1998 Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res. 4:2747–2754.

    Google Scholar 

  106. Dodds HM, Haaz MC, Riou JF, Robert J, Rivory LP. 1998 Identification of a new metabolite of CPT-11 (irinotecan): pharmacological properties and activation to SN-38. J Pharmacol Exp Ther. 286:578–583.

    Google Scholar 

  107. Dodds H, Wunsch R, Gillam E, Rivory L. 1999 Further elucidation of the pathways involved in the catabolism of the camptothecin analogue irinotecan [abstract]. Proc Am Assoc Cancer Res. 40:110.

    Google Scholar 

  108. Lokiec F, du Sorbier BM, Sanderink GJ. 1996 Irinotecan (CPT-11) metabolites in human bile and urine. Clin Cancer Res. 2:1943–1949.

    Google Scholar 

  109. Dodds HM, Robert J, Rivory LP. 1998 The detection of photodegradation products of irinotecan (CPT-11, Campto, Camptosar), in clinical studies, using high-performance liquid chromatography/atmospheric pressure chemical ionisation/mass spectrometry. J Pharm Biomed Anal. 17:785–792.

    Google Scholar 

  110. Iyer L, King CD, Whitington PF, et al. 1998 Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest. 101:847–854.

    Google Scholar 

  111. Rivory LP, Robert J. 1995 Identification and kinetics of a beta-glucuronide metabolite of SN-38 in human plasma after administration of the camptothecin derivative irinotecan. Cancer Chemother Pharmacol. 36: 176–179.

    Google Scholar 

  112. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ. 1994 Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 54:3723–3725.

    Google Scholar 

  113. Canal P, Gay C, Dezeuze A, et al. 1996 Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. Pharmacology and Molecular Mechanisms Group of the European Organization for Research and Treatment of Cancer. J Clin Oncol. 14:2688–2695.

    Google Scholar 

  114. Wasserman E, Myara A, Lokiec F, et al. 1998 Bilirubin (Bil) and SN-38 metabolism: pharmacodynamics of CPT-11 [abstract]. Proc Am Soc Clin Oncol. 7:185a.

    Google Scholar 

  115. Narita M, Nagai E, Hagiwara H, Aburada M, Yokoi T, Kamataki T. 1993 Inhibition of beta-glucuronidase by natural glucuronides of kampo medicines using glucuronide of SN-38 (7-ethyl-10-hydroxycamptothecin) as a substrate. Xenobiotica. 23:5–10.

    Google Scholar 

  116. Yokoi T, Narita M, Nagai E, Hagiwara H, Aburada M, Kamataki T. 1995 Inhibition of UDP-glucuronosyltransferase by aglycons of natural glucuronides in kampo medicines using SN-38 as a substrate. Jpn J Cancer Res. 86:985–989.

    Google Scholar 

  117. Takasuna K, Kasai Y, Kitano Y, et al. 1995 Protective effects of kampo medicines and baicalin against intestinal toxicity of a new anticancer camptothecin derivative, irinotecan hydrochloride (CPT-11), in rats. Jpn J Cancer Res. 86:978–984.

    Google Scholar 

  118. Dodds H, Stewart CF, Cheshire PJ, Hanna SK, PJ H, Rivory LP. 2001 Primary versus secondary activation of CPT-11: a role for tumor glucuronidases? [abstract] Proc Am Assoc Cancer Res. 42:253.

    Google Scholar 

  119. Takahashi T, Fujiwara Y, Miyazaki M, et al. 1998 The role of glucuronidation in 7-ethyl-10-hydroxycamptothecin (SN-38) resistance [abstract]. Proc Am Soc Clin Oncol. 17:185a.

    Google Scholar 

  120. Chu XY, Kato Y, Sugiyama Y. 1997 Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats. Cancer Res. 57:1934–1938.

    Google Scholar 

  121. Chu XY, Kato Y, Niinuma K, Sudo KI, Hakusui H, Sugiyama Y. 1997 Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J Pharmacol Exp Ther. 281:304–314.

    Google Scholar 

  122. Chu XY, Kato Y, Ueda K, et al. 1998 Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters. Cancer Res.; 58:5137–5143.

    Google Scholar 

  123. Sugiyama Y, Kato Y, Chu X. 1998 Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother Pharmacol. 42:S44–S49.

    Google Scholar 

  124. Brangi M, Litman T, Ciotti M, et al. 1999 Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res. 59:5938–5946.

    Google Scholar 

  125. Litman T, Brangi M, Hudson E, et al. 2000 The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci. 113:2011–2021.

    Google Scholar 

  126. Schellens JH, Maliepaard M, Scheper RJ, et al. 2000 Transport of topoisomerase I inhibitors by the breast cancer resistance protein. Potential clinical implications. Ann NY Acad Sci. 922:188–194.

    Google Scholar 

  127. Blaney SM, Takimoto C, Murry DJ, et al. 1998 Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol. 41: 464–468.

    Google Scholar 

  128. Chabot GG. 1997 Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet. 33:245–259.

    Google Scholar 

  129. Chabot GG, Abigerges D, Catimel G, et al. 1995 Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials. Ann Oncol. 6:141–151.

    Google Scholar 

  130. Rivory LP, Chatelut E, Canal P, Mathieu Boue A, Robert J. 1994 Kinetics of the in vivo interconversion of the carboxylate and lactone forms of irinotecan (CPT-11) and of its metabolite SN-38 in patients. Cancer Res. 54: 6330–6333.

    Google Scholar 

  131. Sasaki Y, Yoshida Y, Sudoh K, et al. 1995 Pharmacological correlation between total drug concentration and lactones of CPT-11 and SN-38 in patients treated with CPT-11. Jpn J Cancer Res. 86:111–116.

    Google Scholar 

  132. Herben V, Schellens J, Swart M, et al. 1999 Phase I and pharmacokinetic study of irinotecan administered as a low-dose, continuous intravenous infusion over 14 days in patients with malignant solid tumors. J Clin Oncol. 17:1897–1905.

    Google Scholar 

  133. Van Groeningen C, Van Der Vijgh W, Giaccone G, et al. 1997 Phase I clinical and pharmacokinetic study of 5 day CPT-11 hepatic arterial infusion (HAI) chemotherapy [abstract]. Proc Am Soc Clin Oncol. 16: 219a.

    Google Scholar 

  134. Burke TG, Mi Z. 1994 The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem. 37:40–46.

    Google Scholar 

  135. Takimoto C, Morrison G, Harold N, et al. 2000 Phase I and pharmacologic study of irinotecan administered as a 96-hour infusion weekly to adult cancer patients. J Clin Oncol. 18:659–667.

    Google Scholar 

  136. Furman W, Stewart C, Poquette C, et al. 1999 Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol. 17:1815–1824.

    Google Scholar 

  137. Ma MK, Zamboni WC, Radomski KM, et al. 2000 Pharmacokinetics of irinotecan and its metabolites SN-38 and APC in children with recurrent solid tumors after protracted low-dose irinotecan. Clin Cancer Res. 6: 813–819.

    Google Scholar 

  138. Vassal G, Santos A, Pein F, Frappaz D, Mignard D, Doz F. 1997 Pharmacokinetics of irinotecan (CPT-11) and its metabolites in children [abstract]. Proc Am Assoc Cancer Res. 38:79.

    Google Scholar 

  139. Kehrer DF, Yamamoto W, Verweij J, de Jonge MJ, de Bruijn P, Sparreboom A. 2000 Factors involved in prolongation of the terminal disposition phase of SN-38: clinical and experimental studies. Clin Cancer Res. 6: 3451–3458.

    Google Scholar 

  140. Schaaf L, Ichhpurani N, Elfring G, Wolf D, Rothenberg M, Von Hoff D. 1997 Influence of age on the pharmacokinetics of irinotecan (CPT-11) and its metabolites, SN-38 and SN-38 glucuronide (SN-38G), in patients with previously treated colorectal cancer [abstract]. Proc Am Soc Clin Oncol. 16:202a.

    Google Scholar 

  141. Rivory LP, Findlay M, Clarke S, Bishop J. 1998 Trace analysis of SN-38 in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 714:355–359.

    Google Scholar 

  142. Rivory LP, Clarke S, Bishop J, O’Donnell A, Emmett L, Findlay M. 1996 Irinotecan (CPT-11): a preliminary investigation of the relationship between trough concentrations of the active metabolite, SN-38, and toxicity. 10th NCI-EORTC Meeting.

    Google Scholar 

  143. Slatter JG, Schaaf LJ, Sams JP, et al. 2000 Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab Dispos. 28:423–433.

    Google Scholar 

  144. Kaneda N, Yokokura T. 1990 Nonlinear pharmacokinetics of CPT-11 in rats. Cancer Res. 50: 1721–1725.

    Google Scholar 

  145. Dodds HM, Craik DJ, Rivory LP. 1997 Photodegradation of irinotecan (CPT-11) in aqueous solutions: identification of fluorescent products and influence of solution composition. J Pharm Sci. 86:1410–1416.

    Google Scholar 

  146. Iyer L, Hall D, Das S, et al. 1999 Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther. 65:576–582.

    Google Scholar 

  147. Wasserman E, Myara A, Lokiec F, et al. 1997 Severe CPT-11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol. 8:1049–1051.

    Google Scholar 

  148. Ando Y, Saka H, Ando M, et al. 2000 Polymorphisms of UDP-glucuronosyl-transferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 60:6921–6926.

    Google Scholar 

  149. Ando Y, Saka H, Asai G, Sugiura S, Shimokata K, Kamataki T. 1998 UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol. 9:845–847.

    Google Scholar 

  150. Iyer L, Janisch L, Das S, et al. 2000 UGT1A1 promoter genotype correlates with pharmacokinetics of irinotecan (CPT-11) [abstract]. Proc Am Soc Clin Oncol. 19:178a.

    Google Scholar 

  151. Raymond E, Vernillet L, Boige V, et al. 1999 Phase I and pharmacokinetic (PK) study of irinotecan (CPT-11) in cancer patients (pts) with hepatic dysfunction [abstract]. Proc Am Soc Clin Oncol. 18:165a.

    Google Scholar 

  152. Boige V, Vernillet L, Hua A, et al. 2000 Total plasma clearance of irinotecan (CPT-11) correlates with both alkaline phosphatase and bilirubin levels in patients with tumoral hepatic involvement [abstract]. Proc Am Assoc Cancer Res. 41:608.

    Google Scholar 

  153. Ong S, Clarke S, Bishop J, Dodds H, Rivory LP. 2001 Toxicity of irinotecan (CPT-11) and hepato-renal dysfunction. Anti-Cancer Drugs. 12:619–625.

    Google Scholar 

  154. Reid J, Buckner J, Schaaf L, et al. 1999 Pharmacokientics of irinotecan (CPT-11) in recurrent glioma patients: results of an NCCTG phase II trial [abstract]. Proc Am Soc Clin Oncol. 18:141a.

    Google Scholar 

  155. Kehrer DF, Verweij J, de Bruijn P, Sparreboom A. 2001 Modulation of irinotecan (CPT-11) metabolism in cancer patients by ketoconazole [abstract]. Proc Am Assoc Cancer Res. 42:538.

    Google Scholar 

  156. Gupta E, Safa AR, Wang X, Ratain MJ. 1996 Pharmacokinetic modulation of irinotecan and metabolites by cyclosporin A. Cancer Res. 56:1309–1314.

    Google Scholar 

  157. Gupta E, Wang X, Ramirez J, Ratain MJ. 1997 Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Cancer Chemother Pharmacol. 39:440–444.

    Google Scholar 

  158. de Jonge MJ, Verweij J, Planting AS, et al. 1999 Drug-administration sequence does not change pharmacodynamics and kinetics of irinotecan and cisplatin. Clin Cancer Res. 5:2012–2017.

    Google Scholar 

  159. de Jonge MJ, Sparreboom A, Planting AS, et al. 2000 Phase I study of 3-week schedule of irinotecan combined with cisplatin in patients with advanced solid tumors. J Clin Oncol. 18:187–194.

    Google Scholar 

  160. Saltz LB, Kanowitz J, Kemeny NE, et al. 1996 Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J Clin Oncol. 14:2959–2967.

    Google Scholar 

  161. Negoro S, Fukuoka M, Masuda N, et al. 1991 Phase I study of weekly intravenous infusions of CPT-11, a new derivative of camptothecin, in the treatment of advanced non-small-cell lung cancer. J Natl Cancer Inst. 83: 1164–1168.

    Google Scholar 

  162. Gandia D, Abigerges D, Armand JP, et al. 1993 CPT-11-induced cholinergic effects in cancer patients. J Clin Oncol. 11:196–197.

    Google Scholar 

  163. Dodds H, Rivory L. 1999 The mechanism for the inhibition of acetylcholinesterases by irinotecan (CPT-11). Mol Pharmacol. 56:1346–1353.

    Google Scholar 

  164. Valencak J, Raderer M, Kornek GV, Henja MH, Scheithauer W. 1998 Irinotecan-related cholinergic syndrome induced by coadministration of oxaliplatin. J Natl Cancer Inst. 90:160.

    Google Scholar 

  165. Pitot HC. 1998 US pivotal studies of irinotecan in colorectal carcinoma. Oncology. 12:48–53.

    Google Scholar 

  166. Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG. 1972 Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep. 56:95–101.

    Google Scholar 

  167. Natelson EA, Giovanella BC, Verschraegen CF, et al. 1996 Phase I clinical and pharmacological studies of 20-(S)-camptothecin and 20-(S)-9-nitrocamptothecin as anticancer agents. Ann NY Acad Sci. 803:224–230.

    Google Scholar 

  168. Creemers GJ, Gerrits CJ, Eckardt JR, et al. 1997 Phase I and pharmacologic study of oral topotecan administered twice daily for 21 days to adult patients with solid tumors. J Clin Oncol. 15:1087–1093.

    Google Scholar 

  169. Rowinsky EK, Grochow LB, Hendricks CB, et al. 1992 Phase I and pharmacologic study of topotecan: a novel topoisomerase I inhibitor. J Clin Oncol. 10:647–656.

    Google Scholar 

  170. Kantarjian HM, Beran M, Ellis A, et al. 1993 Phase I study of Topotecan, a new topoisomerase I inhibitor, in patients with refractory or relapsed acute leukemia. Blood. 81:1146–1151.

    Google Scholar 

  171. Kudelka AP, Tresukosol D, Edwards CL, et al. 1996 Phase II study of intravenous topotecan as a 5-day infusion for refractory epithelial ovarian carcinoma. J Clin Oncol. 14:1552–1557.

    Google Scholar 

  172. Araki E, Ishikawa M, Iigo M, Koide T, Itabashi M, Hoshi A. 1993 Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn J Cancer Res. 84:697–702.

    Google Scholar 

  173. Rougier P, Bugat R. 1996 CPT-11 in the treatment of colorectal cancer: clinical efficacy and safety profile. Semin Oncol. 23:34–41.

    Google Scholar 

  174. Saliba F, Hagipantelli R, Misset JL, et al. 1998 Pathophysiology and therapy of irinotecan-induced delayed-onset diarrhea in patients with advanced colorectal cancer: a prospective assessment. J Clin Oncol. 16: 2745–2751.

    Google Scholar 

  175. Kase Y, Hayakawa T, Aburada M, Komatsu Y, Kamataki T. 1997 Preventive effects of Hange-shashin-to on irinotecan hydrochloride-caused diarrhea and its relevance to the colonic prostaglandin E2 and water absorption in the rat. Jpn J Pharmacol. 75:407–413.

    Google Scholar 

  176. Takasuna K, Hagiwara T, Hirohashi M, et al. 1996 Involvement of beta-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res. 56:3752–3757.

    Google Scholar 

  177. Takasuna K, Hagiwara T, Hirohashi M, et al. 1998 Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats. Cancer Chemother Pharmacol. 42:280–286.

    Google Scholar 

  178. Schaaf L, Slatter J, Sams J, et al. 1999 Metabolism and excretion of irinotecan (CPT-11) following IV infusion of [14C]CPT-11 in patients with advanced solid tumor malignancy [abstract]. Proc Am Soc Clin Oncol. 18: 164a.

    Google Scholar 

  179. Lenfers BH, Loeffler TM, Droege CM, Hausamen TU. 1999 Substantial activity of budesonide in patients with irinotecan (CPT-11) and 5-fluorouracil induced diarrhea and failure of loperamide treatment. Ann Oncol. 10: 1251–1253.

    Google Scholar 

  180. Shinkai T, Arioka H, Kunikane H, et al. 1994 Phase I clinical trial of irinotecan (CPT-11), 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin, and cisplatin in combination with fixed dose of vindesine in advanced non-small cell lung cancer. Cancer Res. 54:2636–2642.

    Google Scholar 

  181. Sakai H, Diener M, Gartmann V, Takeguchi N. 1995 Eicosanoid-mediated Cl-secretion induced by the antitumor drug, irinotecan (CPT-11), in the rat colon. Naunyn-Schmiedebergs Arch Pharmacol. 351:309–314.

    Google Scholar 

  182. Sakai H, Sato T, Hamada N, et al. 1997 Thromboxane A2, released by the antitumour drug irinotecan, is a novel stimulator of Cl-secretion in isolated rat colon. J Physiol. 505:133–144.

    Google Scholar 

  183. Goto S, Okutomi T, Suma Y, Kera J, Soma G, Takeuchi S. 1996 Induction of tumor necrosis factor by a camptothecin derivative, irinotecan, in mice and human mononuclear cells. Anticancer Res. 16:2507–2511.

    Google Scholar 

  184. Govindarajan R, Heaton KM, Broadwater R, Zeitlin A, Lang NP, Hauer-Jensen M. 2000 Effect of thalidomide on gastrointestinal toxic effects of irinotecan. Lancet. 356:566–567.

    Google Scholar 

  185. Cao S, Black JD, Troutt AB, Rustum YM. 1998 Interleukin 15 offers selective protection from irinotecan-induced intestinal toxicity in a preclinical animal model. Cancer Res. 58:3270–3274.

    Google Scholar 

  186. Shinohara H, Killion JJ, Kuniyasu H, Kumar R, Fidler IJ. 1998 Prevention of intestinal toxic effects and intensification of irinotecan’s therapeutic efficacy against murine colon cancer liver metastases by oral administration of the lipopeptide JBT 3002. Clin Cancer Res. 4:2053–2063.

    Google Scholar 

  187. Shinohara H, Killion JJ, Bucana CD, Yano S, Fidler IJ. 1999 Oral administration of the immunomodulator JBT-3002 induces endogenous interleukin 15 in intestinal macrophages for protection against irinotecan-mediated destruction of intestinal epithelium. Clin Cancer Res. 5:2148–2156.

    Google Scholar 

  188. Savarese D, Al-Zoubi A, Boucher J. 2000 Glutamine for irinotecan diarrhea. J Clin Oncol. 18: 450–451.

    Google Scholar 

  189. Hardman WE, Moyer MP, Cameron IL. 1999 Fish oil supplementation enhanced CPT-11 (irinotecan) efficacy against MCF7 breast carcinoma xenografts and ameliorated intestinal side-effects. Br J Cancer. 81:440–448.

    Google Scholar 

  190. Michael M, Brittain M, Nagai J, et al. 2001 A phase II study of activated charcoal to prevent irinotecan (CPT-11) induced diarrhea [abstract]. Proc Am Soc Clin Oncol. 20:405a.

    Google Scholar 

  191. Zidan J, Haim N, Beny A, Stein M, Gez E, Kuten A. 2001 Octreotide in the treatment of severe chemotherapy-induced diarrhea. Ann Oncol. 12:227–229.

    Google Scholar 

  192. Ooms LA, Degryse AD, Janssen PA. 1984 Mechanisms of action of loperamide. Scand J Gastroenterol Supp. 96:145–155.

    Google Scholar 

  193. Nikolic-Tomasevic Z, Jelic S, Popov I, Radosavljevic D. 2000 Colorectal cancer: dilemmas regarding patient selection and toxicity prediction. J Chemother. 12:244–251.

    Google Scholar 

  194. van Groeningen C, Van der Vijgh W, Baars J, Stieltjes H, Huibregtse K, Pinedo H. 2000 Altered pharmacokinetics and metabolism of CPT-11 in liver dysfunction: a need for guidelines. Clin Cancer Res. 6: 1342–1346.

    Google Scholar 

  195. Miya T, Fujikawa R, Fukushima J, Nogami H, Koshiishi Y, Goya T. 1998 Bradycardia induced by irinotecan: a case report. Jpn J Clin Oncol. 28:709–711.

    Google Scholar 

  196. Boisseau M, Bugat R, Mahjoubi M. 1996 Rapid tumour lysis syndrome in a metastatic colorectal cancer increased by treatment (CPT-11). Eur J Cancer. 32A:737–738.

    Google Scholar 

  197. Gupta E, Mick R, Ramirez J, et al. 1997 Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol. 15:1502–1510.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rivory, L.P. (2005). Irinotecan. In: Adams, V.R., Burke, T.G. (eds) Camptothecins in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-866-8:229

Download citation

  • DOI: https://doi.org/10.1385/1-59259-866-8:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-027-4

  • Online ISBN: 978-1-59259-866-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics