Skip to main content

B-Cell Immunity in Multiple Sclerosis

  • Chapter
Multiple Sclerosis

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 2417 Accesses

Abstract

Multiple sclerosis (MS) is the most common chronic neurological disorder in young Caucasian adults (13), but after more than a century of active research, its etiology remains unknown. It is a peculiar disease, because it is restricted to the central nervous system (CNS), is not associated with any other neurological or systemic disorder, and has no animal counterpart. In the typical form, MS evolves through relapses and remissions, although, in the majority of patients, a secondary progressive phase ensues (47). Its classic pathological hallmark is the plaque, which, in the acute form of the disease, shows perivascular infiltration and contains macrophages filled with myelin debris (816). This classic view is challenged by magnetic resonance imaging (MRI) and pathological studies, which reveal substantial early axonal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Page WF, Kurtzke JF, Murphy FM, Norman JE, Jr. Epidemiology of multiple sclerosis in U.S. veterans: V. Ancestry and the risk of multiple sclerosis. Ann Neurol 1993;33:632–639.

    Article  PubMed  CAS  Google Scholar 

  2. Poser CM. The epidemiology of multiple sclerosis: a general overview. Ann Neurol 1994;36(Suppl 2): S180–S193.

    Article  PubMed  Google Scholar 

  3. Rothwell PM, Charlton D. High incidence and prevalence of multiple sclerosis in south east Scotland: evidence of a genetic predisposition. J Neurol Neurosurg Psychiatry 1998;64:730–735.

    PubMed  CAS  Google Scholar 

  4. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996;46:907–911.

    PubMed  CAS  Google Scholar 

  5. Confavreux C, Compston DA, Hommes OR, McDonald WI, Thompson AJ. EDMUS, a European database for multiple sclerosis. J Neurol Neurosurg Psychiatry 1992;55:671–676.

    PubMed  CAS  Google Scholar 

  6. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983;13:227–231.

    Article  PubMed  CAS  Google Scholar 

  7. Poser CM. Onset symptoms of multiple sclerosis. J Neurol Neurosurg Psychiatry 1995;58:253–254.

    PubMed  CAS  Google Scholar 

  8. Adams CW, Poston RN, Buk SJ, Sidhu YS, Vipond H. Inflammatory vasculitis in multiple sclerosis. J Neurol Sci 1985;69:269–283.

    Article  PubMed  CAS  Google Scholar 

  9. Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 1998;161:3767–3775.

    PubMed  CAS  Google Scholar 

  10. Lassmann H, Raine CS, Antel J, Prineas JW. Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 1998;86:213–217.

    Article  PubMed  CAS  Google Scholar 

  11. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–285.

    Article  PubMed  CAS  Google Scholar 

  12. Ffrench-Constant C. Pathogenesis of multiple sclerosis. Lancet 1994;343:271–275.

    Article  PubMed  CAS  Google Scholar 

  13. Boyle EA, McGeer PL. Cellular immune response in multiple sclerosis plaques. Am J Pathol 1990;137:575–584.

    PubMed  CAS  Google Scholar 

  14. Ozawa K, Suchanek G, Breitschopf H, et al. Patterns of oligodendroglia pathology in multiple sclerosis. Brain 1994;117(Pt 6):1311–1322.

    Article  PubMed  Google Scholar 

  15. Lassmann H. Neuropathology in multiple sclerosis: new concepts. Mult Scler 1998;4:93–98.

    PubMed  CAS  Google Scholar 

  16. Waxman SG. Demyelinating diseases—new pathological insights, new therapeutic targets. N Engl J Med 1998;338:323–325.

    Article  PubMed  CAS  Google Scholar 

  17. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001;50:121–127.

    Article  PubMed  CAS  Google Scholar 

  18. Thorpe JW, Kidd D, Moseley IF, et al. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 1996;46:373–378.

    PubMed  CAS  Google Scholar 

  19. Poser CM, Kleefield J, O’Reilly GV, Jolesz F. Neuroimaging and the lesion of multiple sclerosis. AJNR Am J Neuroradiol 1987;8:549–552.

    PubMed  CAS  Google Scholar 

  20. Ebers GC, Sadovnick AD, Risch NJ. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 1995;377:150–151.

    Article  PubMed  CAS  Google Scholar 

  21. Doolittle TH, Myers RH, Lehrich JR, et al. Multiple sclerosis sibling pairs: clustered onset and familial predisposition. Neurology 1990;40:1546–1552.

    PubMed  CAS  Google Scholar 

  22. Cowan EP, Pierce ML, McFarland HF, McFarlin DE. HLA-DR and-DQ allelic sequences in multiple sclerosis patients are identical to those found in the general population. Hum Immunol 1991;32:203–210.

    Article  PubMed  CAS  Google Scholar 

  23. Ebers GC, Bulman DE, Sadovnick AD, et al. A population-based study of multiple sclerosis in twins. N Engl J Med 1986;315:1638–1642.

    Article  PubMed  CAS  Google Scholar 

  24. Pringle CE, McEwan LM, Ebers GC. Laryngeal Uhthoff’s phenomenon: a case report. Mult Scler 1995;1:163–164.

    PubMed  CAS  Google Scholar 

  25. Haines JL, Ter-Minassian M, Bazyk A, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 1996;13:469–471.

    Article  PubMed  CAS  Google Scholar 

  26. Hutter CD, Laing P. Multiple sclerosis: sunlight, diet, immunology and etiology. Med Hypotheses 1996;46:67–74.

    Article  PubMed  CAS  Google Scholar 

  27. Dean G, McLoughlin H, Brady R, Adelstein AM, Tallett-Williams J. Multiple sclerosis among immigrants in Greater London. Br Med J 1976;1:861–864.

    PubMed  CAS  Google Scholar 

  28. Detels R, Visscher BR, Haile RW, Malmgren RM, Dudley JP, Coulson AH. Multiple sclerosis and age at migration. Am J Epidemiol 1978;108:386–393.

    PubMed  CAS  Google Scholar 

  29. Gershon AA, Raker R, Steinberg S, Topf-Olstein B, Drusin LM. Antibody to Varicella-Zoster virus in parturient women and their offspring during the first year of life. Pediatrics 1976;58:692–696.

    PubMed  CAS  Google Scholar 

  30. Gray GC, Palinkas LA, Kelley PW. Increasing incidence of varicella hospitalizations in United States Army and Navy personnel: are today’s teenagers more susceptible? Should recruits be vaccinated? Pediatrics 1990;86:867–873.

    PubMed  CAS  Google Scholar 

  31. Ben-Nun A, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 1981;292:60–61.

    Article  PubMed  CAS  Google Scholar 

  32. Wekerle H. The viral triggering of autoimmune disease. Nat Med 1998;4:770–771.

    Article  PubMed  CAS  Google Scholar 

  33. Mokhtarian F, McFarlin DE, Raine CS. Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 1984;309:356–358.

    Article  PubMed  CAS  Google Scholar 

  34. Amor S, Groome N, Linington C, et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 1994;153:4349–4356.

    PubMed  CAS  Google Scholar 

  35. Schluesener HJ, Sobel RA, Weiner HL.. Demyelinating experimental allergic encephalomyelitis (EAE) in the rat: treatment with a monoclonal antibody against activated T cells. J Neuroimmunol 1988;18:341–351.

    Article  PubMed  CAS  Google Scholar 

  36. Schluesener HJ, Lider O, Sobel RA. Induction of hyperacute brain inflammation and demyelination by activated encephalitogenic T cells and a monoclonal antibody specific for a myelin/oligodendrocyte glycoprotein. Autoimmunity 1989;2:265–273.

    PubMed  CAS  Google Scholar 

  37. Lassmann H, Brunner C, Bradl M, Linington C. Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathol (Berl) 1988;75:566–576.

    Article  CAS  Google Scholar 

  38. Lyons JA, San M, Happ MP, Cross AH. B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol 1999;29:3432–3439.

    Article  PubMed  CAS  Google Scholar 

  39. Itoyama Y, Webster HD. Immunocytochemical study of myelin-associated glycoprotein (MAG) and basic protein (BP) in acute experimental allergic encephalomyelitis (EAE). J Neuroimmunol 1982;3:351–364.

    Article  PubMed  CAS  Google Scholar 

  40. Sternberger NH, McFarlin DE, Traugott U, Raine CS.. Myelin basic protein and myelin-associated glycoprotein in chronic, relapsing experimental allergic encephalomyelitis. J Neuroimmunol 1984;6:217–229.

    Article  PubMed  CAS  Google Scholar 

  41. Yoshimura T, Kunishita T, Sakai K, Endoh M, Namikawa T, Tabira T. Chronic experimental allergic encephalomyelitis in guinea pigs induced by proteolipid protein. J Neurol Sci 1985;69:47–58.

    Article  PubMed  CAS  Google Scholar 

  42. Yamamura T, Namikawa T, Endoh M, Kunishita T, Tabira T.. Passive transfer of experimental allergic encephalomyelitis induced by proteolipid apoprotein. J Neurol Sci 1986;76:269–275.

    Article  PubMed  CAS  Google Scholar 

  43. Martin R, Voskuhl R, Flerlage M, McFarlin DE, McFarland HF. Myelin basic protein-specific T-cell responses in identical twins discordant or concordant for multiple sclerosis. Ann Neurol 1993;34:524–535.

    Article  PubMed  CAS  Google Scholar 

  44. Kerlero de Rosbo N, Milo R, Lees MB, Burger D, Bernard CC, Ben-Nun A. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 1993;92:2602–2608.

    PubMed  CAS  Google Scholar 

  45. Sun JB, Olsson T, Wang WZ, et al. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 1991;21:1461–1468.

    Article  PubMed  CAS  Google Scholar 

  46. Trotter JL, Wegescheide CL, Garvey WF, Tourtellotte WW.. Studies of myelin proteins in multiple sclerosis brain tissue. Neurochem Res 1984;9:147–152.

    Article  PubMed  CAS  Google Scholar 

  47. Bansil S, Cook SD, Rohowsky-Kochan C. Multiple sclerosis: immune mechanism and update on current therapies. Ann Neurol 1995;37(Suppl 1):S87–S101.

    Article  PubMed  Google Scholar 

  48. Maffione AB, Tato E, Losito S, et al. In vivo effects of recombinant-interferon-beta1b treatment on polymorphonuclear cell and monocyte functions and on T-cell-mediated antibacterial activity in patients with relapsing-remitting multiple sclerosis. Immunopharmacol Immunotoxicol 2000;22:1–18.

    PubMed  CAS  Google Scholar 

  49. Tourtellotte W. On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiple sclerosis and other diseases. A review and a new formula to estimate the amount of IgG synthesized per day by the central nervous system. J Neurol Sci 1970;10:279–304.

    Article  PubMed  CAS  Google Scholar 

  50. Tourtellotte WW, Murthy K, Brandes D, et al. Schemes to eradicate the multiple sclerosis central nervous system immune reaction. Neurology 1976;26:59–61.

    PubMed  CAS  Google Scholar 

  51. Tibbling G, Link H, Ohman S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest 1977;37:385–390.

    PubMed  CAS  Google Scholar 

  52. Lefvert AK, Link H. IgG production within the central nervous system: a critical review of proposed formulae. Ann Neurol 1985;17:13–20.

    Article  PubMed  CAS  Google Scholar 

  53. Esiri MM. Immunoglobulin-containing cells in multiple-sclerosis plaques. Lancet 1977;2:478.

    Article  PubMed  CAS  Google Scholar 

  54. Grimaldi LM, Maimone D, Reggio A, Raffaele R.. IgG1,3 and 4 oligoclonal bands in multiple sclerosis and other neurological diseases. Ital J Neurol Sci 1986;7:507–513.

    Article  PubMed  CAS  Google Scholar 

  55. Sesboue R, Daveau M, Degos JD, et al. IgG (Gm) allotypes and multiple sclerosis in a French population: phenotype distribution and quantitative abnormalities in CSF with respect to sex, disease severity, and presence of intrathecal antibodies. Clin Immunol Immunopathol 1985;37:143–153.

    Article  PubMed  CAS  Google Scholar 

  56. Giles PD, Wroe SJ.. Cerebrospinal fluid oligoclonal IgM in multiple sclerosis: analytical problems and clinical limitations. Ann Clin Biochem 1990;27(Pt 3):199–207.

    PubMed  Google Scholar 

  57. Lolli F, Siracusa G, Amato MP, et al. Intrathecal synthesis of free immunoglobulin light chains and IgM in initial multiple sclerosis. Acta Neurol Scand 1991;83:239–243.

    PubMed  CAS  Google Scholar 

  58. Sharief MK, Thompson EJ. The predictive value of intrathecal immunoglobulin synthesis and magnetic resonance imaging in acute isolated syndromes for subsequent development of multiple sclerosis. Ann Neurol 1991;29:147–151.

    Article  PubMed  CAS  Google Scholar 

  59. Egg R, Reindl M, Deisenhammer F, Linington C, Berger T. Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis. Mult Scler 2001;7:285–289.

    PubMed  CAS  Google Scholar 

  60. Rolak LA, Beck RW, Paty DW, Tourtellotte WW, Whitaker JN, Rudick RA. Cerebrospinal fluid in acute optic neuritis: experience of the optic neuritis treatment trial. Neurology 1996;46:368–372.

    PubMed  CAS  Google Scholar 

  61. Cole SR, Beck RW, Moke PS, Kaufman DI, Tourtellotte WW. The predictive value of CSF oligoclonal banding for MS 5 years after optic neuritis. Optic Neuritis Study Group. Neurology 1998;51:885–887.

    PubMed  CAS  Google Scholar 

  62. Filippini G, Comi GC, Cosi V, et al. Sensitivities and predictive values of paraclinical tests for diagnosing multiple sclerosis. J Neurol 1994;241:132–137.

    Article  PubMed  CAS  Google Scholar 

  63. Nikoskelainen E, Frey H, Salmi A.. Prognosis of optic neuritis with special reference to cerebrospinal fluid immunoglobulins and measles virus antibodies. Ann Neurol 1981;9:545–550.

    Article  PubMed  CAS  Google Scholar 

  64. Sandberg-Wollheim M, Bynke H, Cronqvist S, Holtas S, Platz P, Ryder LP. A long-term prospective study of optic neuritis: evaluation of risk factors. Ann Neurol 1990;27:386–393.

    Article  PubMed  CAS  Google Scholar 

  65. Warren KG, Catz I, Johnson E, Mielke B. Anti-myelin basic protein and anti-proteolipid protein specific forms of multiple sclerosis. Ann Neurol 1994;35:280–289.

    Article  PubMed  CAS  Google Scholar 

  66. Olsson T, Zhi WW, Hojeberg B, et al. Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 1990;86:981–985.

    PubMed  CAS  Google Scholar 

  67. Zhou SR, Maier CC, Mitchell GW, LaGanke CC, Blalock JE, Whitaker JN. A cross-reactive antimyelin basic protein idiotope in cerebrospinal fluid cells in multiple sclerosis. Neurology 1998;50:411–417.

    PubMed  CAS  Google Scholar 

  68. Raine CS, Cannella B, Hauser SL, Genain CP. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 1999;46:144–160.

    Article  PubMed  CAS  Google Scholar 

  69. Cross AH, Trotter JL, Lyons JA. B cells and antibodies in CNS demyelinating disease. Journal of Neuroimmunology 2001;112:1–14.

    Article  PubMed  CAS  Google Scholar 

  70. Genain CP, Cannella B, Hauser SL, Raine CS.. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 1999;5:170–175.

    Article  PubMed  CAS  Google Scholar 

  71. Horikawa Y, Tsubaki T, Nakajima M. Rubella antibody in multiple sclerosis. Lancet 1973;1:996–997.

    Article  PubMed  CAS  Google Scholar 

  72. Catalano LW, Jr. Herpesvirus hominis antibody in multiple sclerosis and amyotrophic lateral sclerosis. Neurology 1972;22:473–478.

    PubMed  Google Scholar 

  73. Oger J, Roos R, Antel JP. Immunology of multiple sclerosis. Neurol Clin 1983;1:655–679.

    PubMed  CAS  Google Scholar 

  74. Qin YF, Duquette P, Zhang YP, Talbot P, Poole R, Antel J.. Clonal expansion and somatic hypermutation of V-H genes of B cells from cerebrospinal fluid in multiple sclerosis. Journal of Clinical Investigation 1998;102:1045–1050.

    PubMed  CAS  Google Scholar 

  75. Owens GP, Kraus H, Burgoon MP, Smith-Jensen T, Devlin ME, Gilden DH. Restricted use of V(H)4 germline segments in an acute multiple sclerosis brain. Ann Neurol 1998;43:236–243.

    Article  PubMed  CAS  Google Scholar 

  76. Baranzini SE, Jeong MC, Butunoi C, Murray RS, Bernard CCA, Oksenberg JR. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 1999;163:5133–5144.

    PubMed  CAS  Google Scholar 

  77. Colombo M, Dono M, Gazzola P, et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 2000;164:2782–2789.

    PubMed  CAS  Google Scholar 

  78. Cross AH. MS: the return of the B cell. Neurology 2000;54:1214–1215.

    PubMed  CAS  Google Scholar 

  79. Correale J, de Los Milagros Bassani Molinas M.. Oligoclonal bands and antibody responses in Multiple Sclerosis. J Neurol 2002;249:375–389.

    Article  PubMed  CAS  Google Scholar 

  80. Archelos JJ, Storch MK, Hartung HP. The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol 2000;47:694–706.

    Article  PubMed  CAS  Google Scholar 

  81. Jacob J, Kassir R, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med 1991;173:1165–1175.

    Article  PubMed  CAS  Google Scholar 

  82. Liu YJ, Zhang J, Lane PJ, Chan EY, MacLennan IC. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur J Immunol 1991;21:2951–2962.

    Article  PubMed  CAS  Google Scholar 

  83. Vitetta ES, Berton MT, Burger C, Kepron M, Lee WT, Yin XM. Memory B and T cells. Annu Rev Immunol 1991;9:193–217.

    Article  PubMed  CAS  Google Scholar 

  84. MacLennan IC, Liu YJ, Johnson GD. Maturation and dispersal of B-cell clones during T cell-dependent antibody responses. Immunol Rev 1992;126:143–161.

    Article  PubMed  CAS  Google Scholar 

  85. Nossal GJ. The molecular and cellular basis of affinity maturation in the antibody response. Cell 1992;68:1–2.

    Article  PubMed  CAS  Google Scholar 

  86. Siekevitz M, Kocks C, Rajewsky K, Dildrop R. Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell 1987;48:757–770.

    Article  PubMed  CAS  Google Scholar 

  87. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG. The role of clonal selection and somatic mutation in autoimmunity. Nature 1987;328:805–811.

    Article  PubMed  CAS  Google Scholar 

  88. Levy NS, Malipiero UV, Lebecque SG, Gearhart PJ. Early onset of somatic mutation in immunoglobulin VH genes during the primary immune response. J Exp Med 1989;169:2007–2019.

    Article  PubMed  CAS  Google Scholar 

  89. Cochet M, Pannetier C, Regnault A, Darche S, Leclerc C, Kourilsky P. Molecular detection and in vivo analysis of the specific T cell response to a protein antigen. Eur J Immunol 1992;22:2639–2647.

    Article  PubMed  CAS  Google Scholar 

  90. MacLennan IC, Gray D. Antigen-driven selection of virgin and memory B cells. Immunol Rev 1986;91:61–85.

    Article  PubMed  CAS  Google Scholar 

  91. Tsiagbe VK, Inghirami G, Thorbecke GJ.. The physiology of germinal centers. Crit Rev Immunol 1996;16:381–421.

    PubMed  CAS  Google Scholar 

  92. Berek C, Jarvis JM, Milstein C. Activation of memory and virgin B cell clones in hyperimmune animals. Eur J Immunol 1987;17:1121–1129.

    Article  PubMed  CAS  Google Scholar 

  93. Jacob J, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J Exp Med 1992;176:679–687.

    Article  PubMed  CAS  Google Scholar 

  94. Liu YJ, Johnson GD, Gordon J, MacLennan IC. Germinal centres in T-cell-dependent antibody responses. Immunol Today 1992;13:17–21.

    Article  PubMed  CAS  Google Scholar 

  95. Schroeder HW, Jr, Hillson JL, Perlmutter RM. Structure and evolution of mammalian VH families. Int Immunol 1990;2:41–50.

    Article  PubMed  Google Scholar 

  96. Kirkham PM, Mortari F, Newton JA, Schroeder HW, Jr. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. Embo J 1992;11:603–609.

    PubMed  CAS  Google Scholar 

  97. Kroemer G, Helmberg A, Bernot A, Auffray C, Kofler R. Evolutionary relationship between human and mouse immunoglobulin kappa light chain variable region genes. Immunogenetics 1991;33:42–49.

    Article  PubMed  CAS  Google Scholar 

  98. Frippiat JP, Williams SC, Tomlinson IM, et al. Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. Hum Mol Genet 1995;4:983–991.

    Article  PubMed  CAS  Google Scholar 

  99. Roberts S, Cheetham JC, Rees AR. Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature 1987;328:731–734.

    Article  PubMed  CAS  Google Scholar 

  100. Burnet FM. A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J Clin 1976;26:119–121.

    PubMed  CAS  Google Scholar 

  101. Griffiths GM, Berek C, Kaartinen M, Milstein C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 1984;312:271–275.

    Article  PubMed  CAS  Google Scholar 

  102. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC. Mechanism of antigen-driven selection in germinal centres. Nature 1989;342:929–931.

    Article  PubMed  CAS  Google Scholar 

  103. Hollowood K, Macartney JC. Reduced apoptotic cell death in follicular lymphoma. J Pathol 1991;163:337–342.

    Article  PubMed  CAS  Google Scholar 

  104. Bachmann MF, Kundig TM, Odermatt B, Hengartner H, Zinkernagel RM. Free recirculation of memory B cells versus antigen-dependent differentiation to antibody-forming cells. J Immunol 1994;153:3386–3397.

    PubMed  CAS  Google Scholar 

  105. Kraal G, Weissman IL, Butcher EC. Memory B cells express a phenotype consistent with migratory competence after secondary but not short-term primary immunization. Cell Immunol 1988;115:78–87.

    Article  PubMed  CAS  Google Scholar 

  106. Slifka MK, Antia R, Whitmire JK, Ahmed R.. Humoral immunity due to long-lived plasma cells. Immunity 1998;8:363–372.

    Article  PubMed  CAS  Google Scholar 

  107. Gray D, Skarvall H. B-cell memory is short-lived in the absence of antigen. Nature 1988;336:70–73.

    Article  PubMed  CAS  Google Scholar 

  108. Gray D, Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med 1991;174:969–974.

    Article  PubMed  CAS  Google Scholar 

  109. Cannella B, Raine CS. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 1995;37:424–435.

    Article  PubMed  CAS  Google Scholar 

  110. Navikas V, Link H.. Review: cytokines and the pathogenesis of multiple sclerosis. J Neurosci Res 1996;45:322–333.

    Article  PubMed  CAS  Google Scholar 

  111. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2000;26:133–142.

    Article  PubMed  CAS  Google Scholar 

  112. Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A 1999;96:6873–6878.

    Article  PubMed  CAS  Google Scholar 

  113. Sorensen TL, Tani M, Jensen J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999;103:807–815.

    Article  PubMed  CAS  Google Scholar 

  114. Strunk T, Bubel S, Mascher B, Schlenke P, Kirchner H, Wandinger KP. Increased numbers of CCR5+ interferon-gamma-and tumor necrosis factor-alpha-secreting T lymphocytes in multiple sclerosis patients. Ann Neurol 2000;47:269–273.

    Article  PubMed  CAS  Google Scholar 

  115. Bruck W, Porada P, Poser S, et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 1995;38:788–796.

    Article  PubMed  CAS  Google Scholar 

  116. Ferguson B, Matyszak MK, Esiri MM, Perry VH.. Axonal damage in acute multiple sclerosis lesions. Brain 1997;120(Pt 3):393–399.

    Article  PubMed  Google Scholar 

  117. Ganter P, Prince C, Esiri MM.. Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol 1999;25:459–467.

    Article  PubMed  CAS  Google Scholar 

  118. Morrissey SP, Miller DH, Kendall BE, et al. The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain 1993;116(Pt 1):135–146.

    Article  PubMed  Google Scholar 

  119. Beck RW, Cleary PA, Trobe JD, et al. The effect of corticosteroids for acute optic neuritis on the subsequent development of multiple sclerosis. The Optic Neuritis Study Group. N Engl J Med 1993;329:1764–1769.

    Article  PubMed  CAS  Google Scholar 

  120. Frederiksen JL, Larsson HB, Olesen J. Correlation of magnetic resonance imaging and CSF findings in patients with acute monosymptomatic optic neuritis. Acta Neurol Scand 1992;86:317–322.

    PubMed  CAS  Google Scholar 

  121. Soderstrom M.. The clinical and paraclinical profile of optic neuritis: a prospective study. Ital J Neurol Sci 1995;16:167–176.

    Article  PubMed  CAS  Google Scholar 

  122. Hawkes CH, Thompson EJ, Keir G, et al. Iso-electric focusing of aqueous humour IgG in multiple sclerosis. J Neurol 1994;241:436–438.

    Article  PubMed  CAS  Google Scholar 

  123. Optic Neuritis Study Group. The 5-year risk of MS after optic neuritis. Experience of the optic neuritis treatment trial. Neurology 1997;49:1404–1413.

    Google Scholar 

  124. Paolino E, Fainardi E, Ruppi P, et al. A prospective study on the predictive value of CSF oligoclonal bands and MRI in acute isolated neurological syndromes for subsequent progression to multiple sclerosis. J Neurol Neurosurg Psychiatry 1996;60:572–575.

    PubMed  CAS  Google Scholar 

  125. Bosch X. Imaging the brain. N Engl J Med 1998;339:407; discussion 408–409.

    Article  PubMed  CAS  Google Scholar 

  126. Soderstrom M, Ya-Ping J, Hillert J, Link H.. Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings. Neurology 1998;50:708–714.

    PubMed  CAS  Google Scholar 

  127. Plante-Bordeneuve V, Lalu T, Misrahi M, et al. Genotypic-phenotypic variations in a series of 65 patients with familial amyloid polyneuropathy. Neurology 1998;51:708–714.

    PubMed  CAS  Google Scholar 

  128. Bashir K, Whitaker JN. Importance of paraclinical and CSF studies in the diagnosis of MS in patients presenting with partial cervical transverse myelopathy and negative cranial MRI. Mult Scler 2000;6:312–316.

    PubMed  CAS  Google Scholar 

  129. Stendahl-Brodin L, Link H. Relation between benign course of multiple sclerosis and low-grade humoral immune response in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 1980;43:102–105.

    Article  PubMed  CAS  Google Scholar 

  130. Zeman AZ, Kidd D, McLean BN, et al. A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatry 1996;60:27–30.

    PubMed  CAS  Google Scholar 

  131. Gay FW, Drye TJ, Dick GWA, Esiri MM. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis—identification and characterization of the primary demyelinating lesion. Brain 1997;120:1461–1483.

    Article  PubMed  Google Scholar 

  132. Gay D, Esiri M.. Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain 1991;114(Pt 1B):557–572.

    Article  PubMed  Google Scholar 

  133. Pozzilli C, Bernardi S, Mansi L, et al. Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68-Ga-EDTA and positron emission tomography. J Neurol Neurosurg Psychiatry 1988;51:1058–1062.

    PubMed  CAS  Google Scholar 

  134. Loos M. Biosynthesis of the collagen-like C1q molecule and its receptor functions for Fc and polyanionic molecules on macrophages. Curr Top Microbiol Immunol 1983;102:1–56.

    PubMed  CAS  Google Scholar 

  135. Esser AF. Big MAC attack: complement proteins cause leaky patches. Immunol Today 1991;12:316–318; discussion 321.

    Article  PubMed  CAS  Google Scholar 

  136. Bhakdi S, Tranum-Jensen J. Complement lysis: a hole is a hole. Immunol Today 1991;12:318–320; discussion 321.

    Article  PubMed  CAS  Google Scholar 

  137. Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L, Warren KG. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 1997;100:1114–1122.

    PubMed  CAS  Google Scholar 

  138. Sun JP, Olsson T, Wang WZ, et al. Autoreactive T-Cell and B-Cell Responding to Myelin Proteolipid Protein in Multiple-Sclerosis and Controls. Eur J Immunol 1991;21:1461–1468.

    Article  PubMed  CAS  Google Scholar 

  139. Cruz M, Olsson T, Ernerudh J, Hojeberg B, Link H. Immunoblot detection of oligoclonal antimyelin basic protein IgG antibodies in cerebrospinal fluid in multiple sclerosis. Neurology 1987;37:1515–1519.

    PubMed  CAS  Google Scholar 

  140. Olsson T, Baig S, Hojeberg B, Link H.. Antimyelin basic protein and antimyelin antibody-producing cells in multiple sclerosis. Ann Neurol 1990;27:132–136.

    Article  PubMed  CAS  Google Scholar 

  141. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47:707–717.

    Article  PubMed  CAS  Google Scholar 

  142. Compston DA, Morgan BP, Campbell AK, et al. Immunocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathol Appl Neurobiol 1989;15:307–316.

    PubMed  CAS  Google Scholar 

  143. Scolding NJ, Morgan BP, Houston WA, Linington C, Campbell AK, Compston DA. Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 1989;339:620–622.

    Article  PubMed  CAS  Google Scholar 

  144. Link H. Complement factors in multiple sclerosis. Acta Neurol Scand 1972;48:521–528.

    PubMed  CAS  Google Scholar 

  145. Patterson V. C9 in multiple sclerosis. Lancet 1984;2:458.

    Article  PubMed  CAS  Google Scholar 

  146. Morgan BP, Campbell AK, Compston DA.. Terminal component of complement (C9) in cerebrospinal fluid of patients with multiple sclerosis. Lancet 1984;2:251–254.

    Article  PubMed  CAS  Google Scholar 

  147. Sellebjerg F, Jaliashvili I, Christiansen M, Garred P.. Intrathecal activation of the complement system and disability in multiple sclerosis. J Neurol Sci 1998;157:168–174.

    Article  PubMed  CAS  Google Scholar 

  148. Wren DR, Noble M. Oligodendrocytes and oligodendrocyte/type-2 astrocyte progenitor cells of adult rats are specifically susceptible to the lytic effects of complement in absence of antibody. Proc Natl Acad Sci U S A 1989; 86:9025–9029.

    Article  PubMed  CAS  Google Scholar 

  149. Davoust N, Nataf S, Holers VM, Barnum SR. Expression of the murine complement regulatory protein crry by glial cells and neurons. Glia 1999;27:162–170.

    Article  PubMed  CAS  Google Scholar 

  150. Morgan BP, Gasque P. Expression of complement in the brain: role in health and disease. Immunol Today 1996;17:461–466.

    Article  PubMed  CAS  Google Scholar 

  151. Woyciechowska JL, Brzosko WJ. Immunofluorescence study of brain plaques from two patients with multiple sclerosis. Neurology 1977;27:620–622.

    PubMed  CAS  Google Scholar 

  152. Lumsden CE. The immunogenesis of the multiple sclerosis plaque. Brain Res 1971;28:365–390.

    Article  PubMed  CAS  Google Scholar 

  153. Storch MK, Piddlesden S, Haltia M, Iivanainen M, Morgan P, Lassmann H. Multiple sclerosis: in situ evidence for antibody-and complement-mediated demyelination. Ann Neurol 1998;43:465–471.

    Article  PubMed  CAS  Google Scholar 

  154. Nyland H, Matre R, Mork S. Fc receptors of microglial lipophages in multiple sclerosis. N Engl J Med 1980;302:120–121.

    PubMed  CAS  Google Scholar 

  155. Adams CW. The onset and progression of the lesion in multiple sclerosis. J Neurol Sci 1975;25:165–182.

    Article  PubMed  CAS  Google Scholar 

  156. Arstila AU, Riekkinen P, Rinne UK, Laitinen L. Studies on the pathogenesis of multiple sclerosis. Participation of lysosomes on demyelination in the central nervous system white matter outside plaques. Eur Neurol 1973;9:1–20.

    PubMed  CAS  Google Scholar 

  157. Prineas JW, Kwon EE, Cho ES, et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 2001;50:646–657.

    Article  PubMed  CAS  Google Scholar 

  158. Prineas JW, Graham JS. Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 1981;10:149–158.

    Article  PubMed  CAS  Google Scholar 

  159. Gilden DH, Burgoon MP, Kleinschmidt-DeMasters BK, et al. Molecular immunologic strategies to identify antigens and b-cell responses unique to multiple sclerosis. Arch Neurol 2001;58:43–48.

    Article  PubMed  CAS  Google Scholar 

  160. Owens GP, Williamson RA, Burgoon MP, et al. Cloning the antibody response in humans with chronic inflammatory disease: immunopanning of subacute sclerosing panencephalitis (SSPE) brain sections with antibody phage libraries prepared from SSPE brain enriches for antibody recognizing measles virus antigens in situ. J Virol 2000;74:1533–1537.

    Article  PubMed  CAS  Google Scholar 

  161. Burgoon MP, Williamson RA, Owens GP, et al. Cloning the antibody response in humans with inflammatory CNS disease: isolation of measles virus-specific antibodies from phage display libraries of a subacute sclerosing panencephalitis brain. J Neuroimmunol 1999;94:204–211.

    Article  PubMed  CAS  Google Scholar 

  162. Williamson RA, Burgoon MP, Owens GP, et al. Anti-DNA antibodies are a major component of the intrathecal B cell response in multiple sclerosis. Proc Nat Acad Sci U S A 2001;98:1793–1798.

    Article  CAS  Google Scholar 

  163. Stadelmann C, Kerschensteiner M, Misgeld T, et al. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells?. Brain 2002;125(Pt 1):75–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Qin, Y., Duquette, P. (2005). B-Cell Immunity in Multiple Sclerosis. In: Olek, M.J. (eds) Multiple Sclerosis. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-855-2:113

Download citation

  • DOI: https://doi.org/10.1385/1-59259-855-2:113

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-033-5

  • Online ISBN: 978-1-59259-855-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics