Skip to main content

Coronary Calcium Scoring With Multidetector-Row CT

Rationale and Scoring Techniques

  • Chapter
CT of the Heart

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1249 Accesses

Abstract

Coronary heart disease is the leading cause of death, illness, and disability in populations worldwide. Strategies to reduce the risk of coronary heart disease include the early initiation of primary preventive measures including lifestyle changes and/or medical therapy in patients with subclinical disease. The reliable identification of presymptomatic patients, however, is problematic by conventional risk assessment based on traditional risk factors. Direct visualization and quantification of the coronary atherosclerotic plaque burden would be desirable to more precisely determine a patient’s coronary heart risk. In recent years, there has been an important increase of interest in the use of noninvasive measurement of coronary arterial calcification as a screening test for coronary atherosclerosis. Since coronary artery calcification is conceived as a manifestation of atherosclerosis in the arterial wall, the detection of coronary calcifications may serve as a marker for the presence of coronary artery disease. The most frequent application of coronary calcium scoring has thus become the assessment of an individual’s future risk for a myocardial event. This indication and the predictive value of coronary artery calcium measurement and its role in the assessment of myocardial event risk has always been a matter of debate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association. Heart Disease and Stroke Statistics—2003 Update. 2002. Dallas, TX: American Heart Association.

    Google Scholar 

  2. Chambless L, Keil U, Dobson A, et al. Population versus clinical view of case fatality from acute coronary heart disease: results from the WHO MONICA Project 1985–1990. Multinational MONItoring of Trends and Determinants in CArdiovascular Disease. Circulation 1997;96:3849–3859.

    PubMed  CAS  Google Scholar 

  3. Thaulow E, Erikssen J, Sandvik L, et al. Initial clinical presentation of cardiac disease in asymptomatic men with silent myocardial ischemia and angiographically documented coronary artery disease (the Oslo Ischemia Study). Am J Cardiol 1993;72:629–633.

    Article  PubMed  CAS  Google Scholar 

  4. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomized trials of antiplatelet therapy. I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Br Med J 1994;308:81–106.

    Google Scholar 

  5. Shepherd J, Cobbe S, Ford I, et al. West of Scotland Coronary Prevention Study Group. Prevention of coronary heart diesease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995;333:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  6. McCarthy J, Palmer F. Incidence and significance of coronary artery calcification. Br Heart J 1974;36:499–506.

    Article  PubMed  CAS  Google Scholar 

  7. Rifkin R, Parisi A, Folland E. Coronary calcification in the diagnosis of coronary artery disease. Am J Cardiol 1979;44:141–147

    Article  PubMed  CAS  Google Scholar 

  8. Rumberger JA, Simons DB, Fitzpatrick LA, et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–2162

    PubMed  CAS  Google Scholar 

  9. Sangiori G, Rumberger J, Severson A, et al. Arterial calcification and not lumen stenosis is correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 1998;31:126–133

    Article  Google Scholar 

  10. Schmermund A, Schwartz RS, Adamzik M, et al. Coronary atherosclerosis in unheralded sudden coronary death under age 50: histopathologic comparison with healthy subjects dying out of hospital. Atherosclerosis 2001;155:499–508.

    Article  PubMed  CAS  Google Scholar 

  11. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92:1355–1374.

    PubMed  CAS  Google Scholar 

  12. Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 1994;14:840–856.

    PubMed  CAS  Google Scholar 

  13. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–1275.

    PubMed  CAS  Google Scholar 

  14. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56–62.

    PubMed  CAS  Google Scholar 

  15. Mancini GB, Pitt B. Coronary angiographic changes in patients with cardiac events in the Prospective Randomized Evaluation of the Vascular Effects of Norvasc Trial (PREVENT). Am J Cardiol 2002;90:776–778.

    Article  PubMed  Google Scholar 

  16. Doherty T, Detrano R. Coronary arterial calcification as an active process: a new perspective on an old problem. Calcif. Tissue. Int. 1994;54:224–230.

    Article  PubMed  CAS  Google Scholar 

  17. Jeziorska M, McCollum C, Wooley D. Observations on bone formation and remodelling in advanced atherosclerotic lesions of human carotid arteries. Virchows Arch 1998;433:559–565.

    Article  PubMed  CAS  Google Scholar 

  18. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Circulation 1996;94:1175–1192.

    PubMed  CAS  Google Scholar 

  19. Burke AP, Weber D, Kolodgie F, et al. Pathophysiology of calcium deposition in coronary arteries. Herz 2001;26:239–244.

    Article  PubMed  CAS  Google Scholar 

  20. Schmermund A, Baumgart D, Adamzik M, et al. Comparison of electron-beam computed tomography and intracoronary ultrasound in detecting calcified and noncalcified plaques in patients with acute coronary syndromes and no or minimal to moderate angiographic coronary artery disease. Am J Cardiol 1998;81:141–146.

    Article  PubMed  CAS  Google Scholar 

  21. Schmermund A, Erbel R. Unstable coronary plaque and its relation to coronary calcium. Circulation 2001;104:1682–1687.

    Article  PubMed  CAS  Google Scholar 

  22. Janowitz WR, Agatston AS, Kaplan G, et al. Differences in prevalence and extent of coronary artery calcium detected by ultrafast computed tomography in asymptomatic men and women. Am J Cardiol 1993;72:247–254.

    Article  PubMed  CAS  Google Scholar 

  23. Hoff JA, Chomka EV, Krainik AJ, et al. Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 2001;87:1335–1339.

    Article  PubMed  CAS  Google Scholar 

  24. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 2000;101:850–855.

    PubMed  CAS  Google Scholar 

  25. Wong ND, Budoff MJ, Pio J, et al. Coronary calcium and cardiovascular event risk: evaluation by age-and sex-specific quartiles. Am Heart J 2002;143:456–459.

    Article  PubMed  Google Scholar 

  26. Newman A, Naydeck B, Sutton-Tyrell K, et al. Coronary artery calcification in older adults with minimal clinical or subclinical cardiovascular disease. J Am Geriatr Soc 2000;48:256–263.

    PubMed  CAS  Google Scholar 

  27. Souza A, Bream P, Elliott L. Chest film detection of coronary artery calcification: the value of CAC triangle. Radiology 1978;129:7–10.

    PubMed  CAS  Google Scholar 

  28. Detrano R, Wong N, Tang W. Prognostic significance of cardiac cinefluoroscopy for coronary calcifc deposits in asymptomatic high risk subjects. J Am Coll Cardiol 1994;24:354–358.

    PubMed  CAS  Google Scholar 

  29. Margolis JR, Chen JT, Kong Y, et al. The diagnostic and prognostic significance of coronary artery calcification. A report of 800 cases. Radiology 1980;137:609–616.

    PubMed  CAS  Google Scholar 

  30. Rienmüller R, Lipton M. Detection of coronary artery calcification by computed tomography. Dynam Cardiovasc Imag 1987;1:139–145.

    Google Scholar 

  31. Agatston A, Janowitz W, Hildner F, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827–832.

    Article  PubMed  CAS  Google Scholar 

  32. Tannenbaum S, Kondos G, Veselik K, et al. Detection of calcific deposits in coronary arteries by ultrafast computed tomography. J Am Coll Cardiol 1989;15:827–832.

    Google Scholar 

  33. Becker CR, Knez A, Jakobs TF, et al. Detection and quantification of coronary artery calcification with electron-beam and conventional CT. Eur Radiol 1999;9:620–624.

    Article  PubMed  CAS  Google Scholar 

  34. Budoff MJ, Mao S, Zalace CP, et al. Comparison of spiral and electron beam tomography in the evaluation of coronary calcification in asymptomatic persons. Int J Cardiol 2001;77:181–188.

    Article  PubMed  CAS  Google Scholar 

  35. Carr JJ, Crouse JR, 3rd, Goff DC, Jr., et al. Evaluation of subsecond gated helical CT for quantification of coronary artery calcium and comparison with electron beam CT. AJR Am J Roentgenol 2000;174: 915–921.

    PubMed  CAS  Google Scholar 

  36. Bielak LF, Kaufmann RB, Moll PP, et al. Small lesions in the heart identified at electron beam CT: calcification or noise? Radiology 1994;192:631–636.

    PubMed  CAS  Google Scholar 

  37. Becker CR, Kleffel T, Crispin A, et al. Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol 2001;176:1295–1298.

    CAS  Google Scholar 

  38. Callister T, Raggi P, Lippolis N, et al. Effect of HMG-CoA reductase inhibitors on coronary disease as assessed by electron-beam computed tomography. N Engl J Med 1998;339:1972–1978.

    Article  PubMed  CAS  Google Scholar 

  39. Callister TQ, Cooil B, Raya SP, et al. Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 1998;208:807–814.

    PubMed  CAS  Google Scholar 

  40. Ulzheimer S, Kalender WA. Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 2003;13:484–497.

    PubMed  Google Scholar 

  41. Hong C, Becker CR, Schoepf UJ, et al. Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 2002;223:474–480.

    Article  PubMed  Google Scholar 

  42. Mao SS, Oudiz RJ, Bakhsheshi H, et al. Variation of heart rate and electrocardiograph trigger interval during ultrafast computed tomography. Am J Card Imaging 1996;10:239–243.

    PubMed  CAS  Google Scholar 

  43. Mao S, Bakhsheshi H, Lu B, et al. Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring. Radiology 2001;220:707–711.

    Article  PubMed  CAS  Google Scholar 

  44. Hong C, Becker CR, Huber A, et al. ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 2001;220:712–717.

    Article  PubMed  CAS  Google Scholar 

  45. Kopp AF, Schroeder S, Kuettner A, et al. Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the image reconstruction window. Radiology 2001;221:683–688.

    Article  PubMed  CAS  Google Scholar 

  46. Ohnesorge B, Flohr T, Becker C, et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 2000;217:564–571

    PubMed  CAS  Google Scholar 

  47. Achenbach S, Meissner F, Ropers D, et al. Overlapping cross-sections significantly improve the reproducibility of coronary calcium measurements by electron beam tomography: a phantom study. J Comp Assist Tomogr 2001;25:569–573.

    Article  CAS  Google Scholar 

  48. Ohnesorge B, Flohr T, Fischbach R, et al. Reproducibility of coronary calcium quantification in repeat examinations with retrospectively ECG-gated multisection spiral CT. Eur Radiol 2002;12:1532–1540.

    Article  PubMed  CAS  Google Scholar 

  49. McCollough CH. Patient dose in cardiac computed tomography. Herz 2003;28:1–6.

    Article  PubMed  Google Scholar 

  50. Jakobs TF, Becker CR, Ohnesorge B, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12:1081–1086.

    Article  PubMed  Google Scholar 

  51. Detrano R, Hsiai T, Wang S, et al. Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol 1996;27:285–290.

    Article  PubMed  CAS  Google Scholar 

  52. Glagov S, Weisenberg E, Zarins CK, et al. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  53. Friedrich G, Moes N, Muhlberger V, et al. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J 1994;128:435–441.

    Article  PubMed  CAS  Google Scholar 

  54. Kajinami K, Seki H, Takekoshi N, et al. Noninvasive prediction of coronary atherosclerosis by quantification of coronary artery calcification using electron comuted tomography: comparison with electrocardiographic and thallium exercise stress results. J Am Coll Cardiol 1995;26:1209–1221.

    Article  PubMed  CAS  Google Scholar 

  55. Tuzcu E, Berkalp B, De Franco A, et al. The dilemma of diagnosing coronary calcification: angiography versus intravascular ultrasound. J Am Coll Cardiol 1996;27:832–838.

    Article  PubMed  CAS  Google Scholar 

  56. McLaughlin VV, Balogh T, Rich S. Utility of electron beam computed tomography to stratify patients presenting to the emergency room with chest pain. Am J Cardiol 1999;84:327–328, A328.

    Article  PubMed  CAS  Google Scholar 

  57. Georgiou D, Budoff MJ, Kaufer E, et al. Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol 2001;38:105–110.

    Article  PubMed  CAS  Google Scholar 

  58. Janowitz WR, Agatston AS, Viamonte M, Jr. Comparison of serial quantitative evaluation of calcified coronary artery plaque by ultrafast computed tomography in persons with and without obstructive coronary artery disease. Am J Cardiol 1991;68:1–6.

    Article  PubMed  CAS  Google Scholar 

  59. Achenbach S, Ropers D, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 2002;106:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  60. Budoff M, Lane K, Bakhsheshi H, et al. Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol 2000;86:8–11.

    Article  PubMed  CAS  Google Scholar 

  61. Maher JE, Bielak LF, Raz JA, et al. Progression of coronary artery calcification: a pilot study. Mayo Clin Proc 1999;74:347–355.

    PubMed  CAS  Google Scholar 

  62. Downs J, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of the AFCAPS/TexCAPS research. JAMA 1998;279:1615–1622.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson K, Wilson P, Odell P, et al. An updated coronary risk profile—a statement for health professionals. Circulation 1991;83:356–362.

    PubMed  CAS  Google Scholar 

  64. Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837–1847.

    PubMed  CAS  Google Scholar 

  65. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002;105:310–315.

    Article  PubMed  Google Scholar 

  66. Detrano RC, Froelicher VF. Exercise testing: uses and limitations considering recent studies. Prog Cardiovasc Dis 1988;31:837–845.

    Article  Google Scholar 

  67. Petursson M, Jonmundsson E, Brekkan A, et al. Angiographic predictors of new coronary occlusions. Am Heart J 1995;129:515–520.

    Article  PubMed  CAS  Google Scholar 

  68. Eggen DA, Strong JP, McGill HC. Coronary calcification: Relationship to clinically significant coronary lesions and race, sex and topographic distribution. Circulation 1965;32:948–955.

    PubMed  CAS  Google Scholar 

  69. Arad Y, Spadaro LA, Goodman K, et al. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000;36:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  70. Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation 1999;99:2633–2638.

    PubMed  CAS  Google Scholar 

  71. Wong ND, Hsu JC, Detrano RC, et al. Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 2000;86:495–498.

    Article  PubMed  CAS  Google Scholar 

  72. O’Malley PG, Taylor AJ, Jackson JL, et al. Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am J Cardiol 2000;85:945–948.

    Article  PubMed  CAS  Google Scholar 

  73. Hecht HS. Impact of plaque imaging by electron beam tomography on the treatment of dyslipidemias. Am J Cardiol 2001;88:406–408.

    Article  PubMed  CAS  Google Scholar 

  74. Grundy SM. Coronary plaque as a replacement for age as a risk factor in global risk assessment. Am J Cardiol 2001;88:8E–11E.

    Article  PubMed  CAS  Google Scholar 

  75. O’Malley PG, Taylor AJ, Gibbons RV, et al. Rationale and design of the Prospective Army Coronary Calcium (PACC) Study: utility of electron beam computed tomography as a screening test for coronary artery disease and as an intervention for risk factor modification among young, asymptomatic, active-duty United States Army personnel. Am Heart J 1999;137:932–941.

    Article  PubMed  CAS  Google Scholar 

  76. Schmermund A, Möhlenkamp S, Stang A, et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am Heart J 2002;144:212–218.

    Article  PubMed  Google Scholar 

  77. Chambless LE, Heiss G, Folsom AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 1997;146:483–494.

    PubMed  CAS  Google Scholar 

  78. Guerci AD, Arad Y. Potential use of Ca++ scanning to determine the need for and intensity of lipid-lowering therapy in asymptomatic adults. Curr Cardiol Rep 2001;3:408–415.

    Article  PubMed  CAS  Google Scholar 

  79. Kajinami K, Seki H, Takekoshi N, Mabuchi H. Quantification of coronary artery calcification using ultrafast computed tomography: reproducibility of measurements. Coron Artery Dis 1993;4(12): 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  80. Shields JP, Mielke CH, Jr, Rockwood TH, Short RA, Viren FK. Reliability of electron beam computed tomography to detect coronary artery calcification. Am J Card Imaging 1995;9(2):62–66

    PubMed  CAS  Google Scholar 

  81. Wang S, Detrano RC, Secci A, et al. Detection of coronary calcification with electron-beam computed tomography: evaluation of interexamination reproducibility and comparison of three image-acquisition protocols. Am Heart J 1996;132(3):550–558.

    Article  PubMed  CAS  Google Scholar 

  82. Yoon HC, Greaser LE, 3rd, Mather R, et al. Coronary artery calcium: alternate methods for accurate and reproducible quantitation. Acad Radiol 1997;4(10):666–673.

    Article  PubMed  CAS  Google Scholar 

  83. Devries S, Wolfkiel C, Shah V, Chomka E, Rich S. Reproducibility fo the measurement of coronary calcium with ultrafast computed tomography. Am J Cardiol 1995;75(14):973–975.

    Article  PubMed  CAS  Google Scholar 

  84. Breen JB, Sheedy PF, Schwartz RS, et al. Coronary artery calcification detected with ultrafast CT as an indication of coronary artery disease. Radiology 1992;185:435–439.

    PubMed  CAS  Google Scholar 

  85. Fallavollita JA, Brody AS, Bunnell IL, Kumar K, Canty JM, Jr. Fast computed tomography detection of coronary calcification in the diagnosis of coronary artery disease. Comparison with angiography in patients <50 years old. Circulation 1994;89(1):285–290.

    PubMed  CAS  Google Scholar 

  86. Rumberger JA, Sheedy PF, III, Breen JF. Coronary calcium, as determined by electron beam computed tomography, and coronary disease on arteriogram: Effect of patient’s sex on diagnosis. Circulation 1995;91:1363–1367.

    PubMed  CAS  Google Scholar 

  87. Budoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation 1996;93(5):898–904.

    PubMed  CAS  Google Scholar 

  88. Haberl R, Becker A, Leber A, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 2001;37(2):451–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press, Inc., Totowa, NJ

About this chapter

Cite this chapter

Fischbach, R., Maintz, D. (2005). Coronary Calcium Scoring With Multidetector-Row CT. In: Schoepf, U.J. (eds) CT of the Heart. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-818-8:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-818-8:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-303-9

  • Online ISBN: 978-1-59259-818-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics