Skip to main content

The Future of Cardiopulmonary Resuscitation

Combination Therapy

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1314 Accesses

Abstract

The physiology of cardiopulmonary resuscitation (CPR) is complex and changes over time. Becker and Weisfeldt defined three time-sensitive phases of resuscitation: electrical, circulatory, and metabolic (1). Each of these phases is characterized by multiple physiological abnormalities to become more profound and difficult to reverse over time. Beyond the first phase, which can often be corrected by a single intervention (e.g., prompt defibrillation for ventricular fibrillation [VF] or pulseless ventricular tachycardia, and increasing host of challenges develop (e.g., maintaining coronary and cerebral blood flow and pressure, counteracting vasodilatation, cerebral protection, minimize and postresuscitation left ventricular dysfunction).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weisfeldt ML, Becker LB. Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA 2002; 288:3035–3038.

    Article  PubMed  Google Scholar 

  2. Vukmir RB, Bircher N, Safar P. Sodium bicarbonate in cardiac arrest: A reappraisal. Am J Emerg Med 1996; 14:192–206.

    Article  PubMed  CAS  Google Scholar 

  3. Sun S, Weil MH, Tang W, Povoas HP, Mason E. Combined effects of buffer and adrenergic agents on postresuscitation myocardial function. J Pharmacol Exp Ther 1999; 291:773–777.

    PubMed  CAS  Google Scholar 

  4. Dybvik T, Strand T, Steen PA. Buffer therapy during out-of-hospital cardiopulmonary resuscitation Resuscitation 1995; 29:89–95.

    Article  PubMed  CAS  Google Scholar 

  5. Leong EC, Bendall JC, Boyd AC, Einstein R. Sodium bicarbonate improves the chance of resuscitation after 10 minutes of cardiac arrest in dogs. Resuscitation 2001; 51:309–315.

    Article  PubMed  CAS  Google Scholar 

  6. Pearson JW, Redding JS. Peripheral vascular tone in cardiac resuscitation. Anesth Analg 1965; 44: 746–762.

    Article  PubMed  CAS  Google Scholar 

  7. Pearson JW, Redding JS. Influence of peripheral vascular tone on cardiac resuscitation. Anesth Analg1967; 46:746–752.

    Article  Google Scholar 

  8. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 1995; 92:3089–3093.

    PubMed  CAS  Google Scholar 

  9. Ditchey RV, Rubio-Perez A, Slinker BK. Beta-adrenergic blockade reduces myocardial injury during experimental cardiopulmonary resuscitation. J Am Coll Cardiol 1994; 24:804–812.

    Article  PubMed  CAS  Google Scholar 

  10. Lindner KH, Prengel AW, Pfenninger EG, et al. Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs. Circulation 1995; 91:215–221.

    PubMed  CAS  Google Scholar 

  11. Lindner KH, Prengel AW, Brinkmann A, Strohmenger HU, Lindner IM, Lurie KG. Vasopressin administration in refractory cardiac arrest. Ann Intern Med 1996; 124:1061–1064.

    PubMed  CAS  Google Scholar 

  12. Lindner KH, Haak T, Keller A, Bothner U, Lurie KG. Release of endogenous vasopressors during and after cardiopulmonary resuscitation. Heart 1996; 75:145–150.

    Article  PubMed  CAS  Google Scholar 

  13. Stiell IG, Hebert PC, Wells GA, et al. Vasopressin versus epinephrine for inhospital cardiac arrest: a randomised controlled trial. Lancet 2001; 358:105–109.

    Article  PubMed  CAS  Google Scholar 

  14. Mulligan KA, McKnite SH, Lindner KH, Lindstrom PJ, Detloff B, Lurie KG. Synergistic effects of vasopressin plus epinephrine during cardiopulmonary resuscitation. Resuscitation 1997; 35:265–271.

    Article  PubMed  CAS  Google Scholar 

  15. Wenzel V, Linder KH, Augenstein S, Prengel AW, Strohmenger HU. Vasopressin combined with epinephrine decreases cerebral perfusion compared with vasopressin alone during cardiopulmonary resuscitation in pigs. Stroke 1998; 29:1462–1467; discussion 7,8.

    PubMed  CAS  Google Scholar 

  16. Voelckel WG, Lindner KH, Wenzel V, et al. Effects of vasopressin and epinephrine on splanchnic blood flow and renal function during and after cardiopulmonary resuscitation in pigs. Crit Care Med 2000; 28:1083–1088.

    Article  PubMed  CAS  Google Scholar 

  17. Mayr VD, Wenzel V, Voelckel WG, et al. Developing a vasopressor combination in a pig model of adult asphyxial cardiac arrest. Circulation 2001; 104:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  18. Voelckel WG, Lurie KG, McKnite S, et al. Effects of epinephrine and vasopressin in a piglet model of prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med 2002; 30:957–962.

    Article  PubMed  CAS  Google Scholar 

  19. Kono S, Suzuki A, Obata Y, Igarashi H, Bito H, Sato S. Vasopressin with delayed combination of nitroglycerin increases survival rate in asphyxia rat model. Resuscitation 2002; 54:297–301.

    Article  PubMed  CAS  Google Scholar 

  20. Lurie KG, Voelckel WG, Iskos DN, et al. Combination drug therapy with vasopressin, adrenaline (epinephrine) and nitroglycerin improves vital organ blood flow in a porcine model of ventricular fibrillation. Resuscitation 2002; 54:187–194.

    Article  PubMed  CAS  Google Scholar 

  21. Schultz DD, Olivas GS. The use of cough cardiopulmonary resuscitation in clinical practice. Heart Lung 1986; 15:273–282.

    PubMed  CAS  Google Scholar 

  22. Krischer JP, Fine EG, Weisfeldt ML, Guerci AD, Nagel E, Chandra N. Comparison of prehospital conventional and simultaneous compression-ventilation cardiopulmonary resuscitation. Crit Care Med 1989; 17:1263–1269.

    PubMed  CAS  Google Scholar 

  23. Barranco F, Lesmes A, Irles JA, et al. Cardiopulmonary resuscitation with simultaneous chest and abdominal compression: comparative study in humans. Resuscitation 1990; 20:67–77.

    Article  PubMed  CAS  Google Scholar 

  24. Gazmuri RJ, Weil MH, von Planta M, Gazmuri RR, Shah DM, Rackow EC. Cardiac resuscitation by extracorporeal circulation after failure of conventional CPR. J Lab Clin Med 1991; 118:65–73.

    PubMed  CAS  Google Scholar 

  25. Gazmuri RJ, Weil MH, Terwilliger K, Shah DM, Duggal C, Tang W. Extracorporeal circulation as an alternative to open-chest cardiac compression for cardiac resuscitation. Chest 1992; 102:1846–1852.

    Article  PubMed  CAS  Google Scholar 

  26. Cohen TJ, Tucker KJ, Redberg RF, et al. Active compression-decompression resuscitation: a novel method of cardiopulmonary resuscitation. Am Heart J 1992; 124:1145–1150.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen TJ, Tucker KJ, Lurie KG, et al. Active compression-decompression. A new method of cardiopulmonary resuscitation. JAMA 1992; 267:2916–2923.

    Article  PubMed  CAS  Google Scholar 

  28. Cohen TJ, Goldner BG, Maccaro PC, et al. A comparison of active compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for cardiac arrests occurring in the hospital. N Engl J Med 1993; 329:1918–1921.

    Article  PubMed  CAS  Google Scholar 

  29. Tucker KJ, Idris A. Clinical and laboratory investigations of active compression-decompression cardiopulmonary resuscitation [editorial]. Resuscitation 1994; 28:1–7.

    Article  PubMed  CAS  Google Scholar 

  30. Wik L, Naess PA, Ilebekk A, Steen PA. Simultaneous active compression-decompression and abdominal binding increase carotid blood flow additively during cardiopulmonary resuscitation (CPR) in pigs. Resuscitation 1994; 28:55–64.

    Article  PubMed  CAS  Google Scholar 

  31. Wik L, Mauer D, Robertson C. The first European pre-hospital active compression-decompression (ACD) cardiopulmonary resuscitation workshop: A report and a review of ACD-CPR. Resuscitation 1995; 30: 191–202.

    Article  PubMed  CAS  Google Scholar 

  32. Wik L, Naess PA, Ilebekk A, Nicolaysen G, Steen PA. Effects of various degrees of compression and active decompression on haemodynamics, end-tidal CO2, and ventilation during cardiopulmonary resuscitation of pigs. Resuscitation 1996; 31:45–57.

    Article  PubMed  CAS  Google Scholar 

  33. Wik L, Schneider T, Baubin M, et al. Active compression-decompression cardiopulmonary resuscitation—instructor and student manual for teaching and training. Part II: A student and instructor manual. Resuscitation 1996; 32:206–212.

    Article  PubMed  CAS  Google Scholar 

  34. Hoekstra OS, Van Lambalgen AA, Groeneveld ABJ, Van den Bos GC, Thijs LG. Abdominal compressions increase vital organ perfusion during CPR in dogs: Relation with efficacy of thoracic compressions. Ann Emerg Med 1995; 25:375–385.

    Article  PubMed  CAS  Google Scholar 

  35. Lurie KG, Coffeen P, Shultz J, McKnite S, Detloff B, Mulligan K. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation 1995; 91:1629–1632.

    PubMed  CAS  Google Scholar 

  36. Lurie KG. Active compression-decompression CPR: a progress report. Resuscitation 1994; 28:115–22.

    Article  PubMed  CAS  Google Scholar 

  37. Lurie KG, Shultz JJ, Callaham ML, et al. Evaluation of active compression-decompression CPR in victims of out-of-hospital cardiac arrest. JAMA 1994; 271:1405–1411.

    Article  PubMed  CAS  Google Scholar 

  38. Lurie K, Voelckel W, Plaisance P, et al. Use of an inspiratory impedance threshold valve during cardiopulmonary resuscitation: a progress report. Resuscitation 2000; 44:219–230.

    Article  PubMed  CAS  Google Scholar 

  39. Lurie KG, Mulligan KA, McKnite S, Detloff B, Lindstrom P, Lindner KH. Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest 1998; 113:1084–1090.

    PubMed  CAS  Google Scholar 

  40. Lurie KG. Recent advances in mechanical methods of cardiopulmonary resuscitation. Acta Anaesthesiol Scand Suppl 1997; 111:49–52.

    PubMed  CAS  Google Scholar 

  41. Plaisance P, Lurie KG, Vicaut E, et al. A comparison of standard cardiopulmonary resuscitation and active compression-decompression resuscitation for out-of-hospital cardiac arrest. French Active Compression-Decompression Cardiopulmonary Resuscitation Study Group. N Engl J Med 1999; 341: 569–575.

    Article  PubMed  CAS  Google Scholar 

  42. Plaisance P, Lurie KG, Payen D. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation 2000; 101:989–994.

    PubMed  CAS  Google Scholar 

  43. Shultz JJ, Lurie KG. Variations in cardiopulmonary resuscitation techniques: Past, present and future. Can J Cardiol 1995; 11:873–880.

    PubMed  CAS  Google Scholar 

  44. Voelckel WG, Lurie KG, Sweeney M, et al. Effects of active compression-decompression cardiopulmonary resuscitation with the inspiratory threshold valve in a young porcine model of cardiac arrest. Pediatr Res 2002; 51:523–527.

    Article  PubMed  Google Scholar 

  45. Samniah N, Voelckel WG, Zielinski TM, et al. Feasibility and effects of transcutaneous phrenic nerve stimulation combined with an inspiratory impedance threshold in a pig model of hemorrhagic shock. Crit Care Med 2003; 31: 1197–1202.

    Article  PubMed  Google Scholar 

  46. Gisvold SE, Sterz F, Abramson NS, et al. Cerebral resuscitation from cardiac arrest: Treatment potentials. Crit Care Med 1996; 24(Suppl):S69–S80.

    PubMed  CAS  Google Scholar 

  47. Raedler C, Voelckel WG, Wenzel V, et al. Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve. Anesth Analg 2002; 95:1496–1502, table of contents.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ornato, J.P. (2005). The Future of Cardiopulmonary Resuscitation. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:741

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:741

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics