Skip to main content

Animal Models of Resuscitation

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1318 Accesses

Abstract

The ultimate goal of cardiopulmonary resuscitation (CPR) is the total reanimation of the cardiac arrest (CA) victim back to their pre-arrest status. Much of what we know and do regarding human CPR is based on animal modeling of the many components of CA and its treatment. Ideally, hypotheses regarding mechanisms of injury caused by arrest and treatments to improve outcome should first be tested in robust preclinical models of this disease followed by clinical testing. Although some aspects of the disease and treatment lend themselves to computational, cell culture, and isolated organ modeling, whole animal experimentation remains the standard for preclinical testing (14). To this end, the proper design and use of the preclinical model is crucial to ensure that clinical trials are warranted and optimally designed for ultimate validation of the hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelos MG, Murray HN, Gorsline RT, Klawitter PF. Glucose, insulin and potassium (GIK) during reperfusion mediates improved myocardial bioenergetics. Resuscitation 2002; 55:329–336.

    Article  PubMed  CAS  Google Scholar 

  2. O’Neil BJ, Alousi SS, White BC, Rafols JA. Ultrastructural consequences of radical damage before and after differentiation of neuroblastoma B-104 cells. Acta Neuropathol (Berl) 1996; 92:75–89.

    Article  CAS  Google Scholar 

  3. Babbs CF, Thelander K. Theoretically optimal duty cycles for chest and abdominal compression during external cardiopulmonary resuscitation. Acad Emerg Med 1995; 2:698–707.

    PubMed  CAS  Google Scholar 

  4. Babbs CF, Ralston SH, Geddes LA. Theoretical advantages of abdominal counterpulsation in CPR as demonstrated in a simple electrical model of the circulation. Ann Emerg Med 1984; 13(Pt 1):660–671.

    Article  PubMed  CAS  Google Scholar 

  5. Traystman RJ. Animal models of focal and global cerebral ischemia. Ilar J 2003; 44:85–95.

    PubMed  CAS  Google Scholar 

  6. Schultz CH, Rivers EP, Feldkamp CS, Goad EG, Smithline HA, Martin GB, et al. A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest. Crit Care Med 1993; 21:1339–1347.

    Article  PubMed  CAS  Google Scholar 

  7. Basha MA, Meyer GS, Kunkel SL, Strieter RM, Rivers EP, Popovich J. Presence of tumor necrosis factor in humans undergoing cardiopulmonary resuscitation with return of spontaneous circulation. J Crit Care 1991; 6:185–189.

    Article  Google Scholar 

  8. Feuerstein GZ, Liu T, Barone FC. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 1994; 6:341–360.

    PubMed  CAS  Google Scholar 

  9. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53:31–47.

    Article  PubMed  CAS  Google Scholar 

  10. Sullivan JM, Alousi SS, Hikade KR, et al. Insulin induces dephosphorylation of eukaryotic initiation factor 2alpha and restores protein synthesis in vulnerable hippocampal neurons after transient brain ischemia. J Cereb Blood Flow Metab 1999; 19:1010–1019.

    Article  PubMed  CAS  Google Scholar 

  11. Krause GS, Tiffany BR. Suppression of protein synthesis in the reperfused brain. Stroke 1993; 24:747–755; discussion 55,56.

    PubMed  CAS  Google Scholar 

  12. Reid KH, Paskitti M, Guo SZ, Schmelzer T, Iyer V. Experience with ketamine and sodium pentobarbital as anesthetics in a rat model of cardiac arrest and resuscitation. Resuscitation 2003; 57:201–210.

    Article  PubMed  CAS  Google Scholar 

  13. Rana MW, Singh G, Wang P, Ayala A, Zhou M, Chaudry IH. Protective effects of preheparinization on the microvasculature during and after hemorrhagic shock. J Trauma 1992; 32:420–426.

    Article  PubMed  CAS  Google Scholar 

  14. Wang P, Ba ZF, Chaudry IH. Endothelial cell dysfunction occurs after hemorrhage in nonheparinized but not in preheparinized models. J Surg Res 1993; 54:499–506.

    Article  PubMed  CAS  Google Scholar 

  15. Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001; 166:7527–7533.

    PubMed  CAS  Google Scholar 

  16. Yealy DM. How much “significance” is significant? The transition from animal models to human trials in resuscitation research. Ann Emerg Med 1993; 22:11–16.

    Article  PubMed  CAS  Google Scholar 

  17. von Planta I, Weil MH, von Planta M, Bisera J, et al. Cardiopulmonary resuscitation in the rat. J Appl Physiol 1988; 65:2641–2647.

    Google Scholar 

  18. Katz L, Ebmeyer U, Safar P, Radovsky A, Neumar R. Outcome model of asphyxial cardiac arrest in rats. J Cereb Blood Flow Metab 1995; 15:1032–1039.

    PubMed  CAS  Google Scholar 

  19. Song L, Weil MH, Tang W, Sun S, Pellis T. Cardiopulmonary resuscitation in the mouse. J Appl Physiol 2002; 93:1222–1226.

    PubMed  Google Scholar 

  20. Dawson TH. Engineering design of the cardiovascular system of mammals. Englewood Cliffs, NJ: Prentice Hall, 1991.

    Google Scholar 

  21. Takiguchi Y, Wada K, Nakashima M. Hemodynamic effects on thrombogenesis and platelet aggregation in spontaneously hypertensive rats. Clin Exp Hypertens 1993; 15:197–208.

    PubMed  CAS  Google Scholar 

  22. Akiyama K, Tanaka R, Sato M, Takeda N. Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation. Neurol Med Chir (Tokyo) 2001; 41:590–598.

    Article  CAS  Google Scholar 

  23. Godecke A, Schrader J. Adaptive mechanisms of the cardiovascular system in transgenic mice—lessons from eNOS and myoglobin knockout mice. Basic Res Cardiol 2000; 95:492–498.

    Article  PubMed  CAS  Google Scholar 

  24. Damy SB, de Lourdes Higuchi M, et al. Coinfection of laboratory rats with Mycoplasma pulmonis and Chlamydia pneumoniae. Contemp Top Lab Anim Sci 2003; 42:52–56.

    PubMed  CAS  Google Scholar 

  25. Halperin HR, Tsitlik JE, Guerci AD, et al. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation 1986; 73:539–550.

    PubMed  CAS  Google Scholar 

  26. Leonov Y, Sterz F, Safar P, Radovsky A. Moderate hypothermia after cardiac arrest of 17 minutes in dogs. Effect on cerebral and cardiac outcome. Stroke 1990; 21:1600–1606.

    PubMed  CAS  Google Scholar 

  27. Gross DR. Animal Models in Cardiovascular Research. Boston, MA: Kluwer Academic Publishers, 1985.

    Google Scholar 

  28. Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 1996; 28:232–240.

    Article  PubMed  CAS  Google Scholar 

  29. Wenzel V, Lindner KH, Krismer AC, et al. Survival with full neurologic recovery and no cerebral pathology after prolonged cardiopulmonary resuscitation with vasopressin in pigs. J Am Coll Cardiol 2000; 35:527–533.

    Article  PubMed  CAS  Google Scholar 

  30. Bocan TM. Animal models of atherosclerosis and interpretation of drug intervention studies. Curr Pharm Des 1998; 4:37–52.

    PubMed  CAS  Google Scholar 

  31. King MK, Coker ML, Goldberg A, et al. Selective matrix metalloproteinase inhibition with developing heart failure: effects on left ventricular function and structure. Circ Res 2003; 92:177–185.

    Article  PubMed  CAS  Google Scholar 

  32. Argenziano M, Dean DA, Moazami N, et al. Inhaled nitric oxide is not a myocardial depressant in a porcine model of heart failure. J Thorac Cardiovasc Surg 1998; 115:700–708.

    Article  PubMed  CAS  Google Scholar 

  33. Yarbrough WM, Spinale FG. Large animal models of congestive heart failure: A critical step in translating basic observations into clinical applications. J Nucl Cardiol 2003; 10:77–86.

    Article  PubMed  Google Scholar 

  34. Gilroy BA, Rockoff MA, Dunlop BJ, Shapiro HM. Cardiopulmonary resuscitation in the nonhuman primate. J Am Vet Med Assoc 1980; 177:867–869.

    PubMed  CAS  Google Scholar 

  35. Eshel G, Safar P, Radovsky A, Stezoski SW. Hyperthermia-induced cardiac arrest in monkeys: limited efficacy of standard CPR. Aviat Space Environ Med 1997; 68:415–420.

    PubMed  CAS  Google Scholar 

  36. Malinow MR. The role of nonhuman primates in research on atherosclerosis regression-hypothetical mechanisms implicated in regression. Artery 1981; 9:2–11.

    PubMed  CAS  Google Scholar 

  37. Brown CG, Martin DR, Pepe PE, et al. A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. The Multicenter High-Dose Epinephrine Study Group. N Engl J Med 1992; 327:1051–1055.

    Article  PubMed  CAS  Google Scholar 

  38. Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. N Engl J Med 1986; 314:397–403.

    Google Scholar 

  39. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346:549–556.

    Google Scholar 

  40. Halperin HR, Tsitlik JE, Gelfand M, et al. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med 1993; 329:762–768.

    Article  PubMed  CAS  Google Scholar 

  41. van Bommel J, de Korte D, Lind A, et al. The effect of the transfusion of stored RBCs on intestinal microvascular oxygenation in the rat. Transfusion 2001; 41:1515–1523.

    Article  PubMed  Google Scholar 

  42. Mackway-Jones K, Foex BA, Kirkman E, Little RA. Modification of the cardiovascular response to hemorrhage by somatic afferent nerve stimulation with special reference to gut and skeletal muscle blood flow. J Trauma 1999; 47:481–485.

    PubMed  CAS  Google Scholar 

  43. Rady MY, Little RA, Edwards JD, Kirkman E, Faithful S. The effect of nociceptive stimulation on the changes in hemodynamics and oxygen transport induced by hemorrhage in anesthetized pigs. J Trauma 1991; 31:617–621; discussion 21–22.

    PubMed  CAS  Google Scholar 

  44. Saggi BH, Sugerman HJ, Ivatury RR, Bloomfield GL. Abdominal compartment syndrome. J Trauma 1998; 45:597–609.

    PubMed  CAS  Google Scholar 

  45. Slutsky AS. Lung injury caused by mechanical ventilation. Chest 1999; 116(Suppl):9S–15S.

    PubMed  CAS  Google Scholar 

  46. Redding JS, Pearson JW. Evaluation of drugs for cardiac resusciation. Anesthesiology 1963; 24:203–207.

    Article  PubMed  CAS  Google Scholar 

  47. Hoekstra JW, Rinnert K, Van Ligten P, Neumar R, Werman HA, Brown CG. The effectiveness of bystander CPR in an animal model [see comments]. Ann Emerg Med 1990; 19:881–886.

    Article  PubMed  CAS  Google Scholar 

  48. Brown CG, Werman HA, Davis EA, Hobson J, Hamlin RL. The effects of graded doses of epinephrine on regional myocardial blood flow during cardiopulmonary resuscitation in swine. Circulation 1987; 75:491–497.

    PubMed  CAS  Google Scholar 

  49. Hoekstra JW, Banks JR, Martin DR, et al. Effect of first-responder automated defibrillation on time to therapeutic interventions during out-of-hospital cardiac arrest. The Multicenter High Dose Epinephrine Study Group. Ann Emerg Med 1993; 22:1247–1253.

    Article  PubMed  CAS  Google Scholar 

  50. Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 1995; 92:3089–3093.

    PubMed  CAS  Google Scholar 

  51. Rivers EP, Wortsman J, Rady MY, Blake HC, McGeorge FT, Buderer NM. The effect of the total cumulative epinephrine dose administered during human CPR on hemodynamic, oxygen transport, and use variables in the postresuscitation period. Chest 1994; 106:1499–1507.

    Article  PubMed  CAS  Google Scholar 

  52. Rivers EP, Rady MY, Martin GB, et al. Venous hyperoxia after cardiac arrest. Characterization of a defect in systemic oxygen use. Chest 1992; 102:1787–1793.

    Article  PubMed  CAS  Google Scholar 

  53. Zahger D. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med 1997; 337:1321,1322.

    Article  PubMed  CAS  Google Scholar 

  54. Kern KB, Lancaster L, Goldman S, Ewy GA. The effect of coronary artery lesions on the relationship between coronary perfusion pressure and myocardial blood flow during cardiopulmonary resuscitation in pigs. Am Heart J 1990; 120:324–333.

    Article  PubMed  CAS  Google Scholar 

  55. Kern KB, Ewy GA. Minimal coronary stenoses and left ventricular blood flow during CPR. Ann Emerg Med 1992; 21:1066–1072.

    Article  PubMed  CAS  Google Scholar 

  56. Kern KB, de la Guardia B, Ewy GA. Myocardial perfusion during cardiopulmonary resuscitation (CPR): effects of 10, 25 and 50% coronary stenoses. Resuscitation 1998; 38:107–111.

    Article  PubMed  CAS  Google Scholar 

  57. Angelos MG, Gaddis ML, Gaddis GM, Leasure JE. Improved survival and reduced myocardial necrosis with cardiopulmonary bypass reperfusion in a canine model of coronary occlusion and cardiac arrest. Ann Emerg Med 1990; 19:1122–1128.

    Article  PubMed  CAS  Google Scholar 

  58. Neumar RW, Bircher NG, Sim KM, et al. Epinephrine and sodium bicarbonate during CPR following asphyxial cardiac arrest in rats. Resuscitation 1995; 29:249–263.

    Article  PubMed  CAS  Google Scholar 

  59. Mayr VD, Wenzel V, Voelckel WG, et al. Developing a vasopressor combination in a pig model of adult asphyxial cardiac arrest. Circulation 2001; 104:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  60. Paradis NA, Martin GB, Goetting MG, et al. Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans. Insights into mechanisms [see comments]. Circulation 1989; 80:361–368.

    PubMed  CAS  Google Scholar 

  61. Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 1990; 263:1106–1113.

    Article  PubMed  CAS  Google Scholar 

  62. Paradis NA, Martin GB, Rosenberg J, et al. The effect of standard-and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation. JAMA 1991; 265:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  63. Berg RA, Otto CW, Kern KB, et al. A randomized, blinded trial of high-dose epinephrine versus standarddose epinephrine in a swine model of pediatric asphyxial cardiac arrest. Crit Care Med 1996; 24:1695–1700.

    Article  PubMed  CAS  Google Scholar 

  64. Kern KB, Carter AB, Showen RL, et al. Comparison of mechanical techniques of cardiopulmonary resuscitation: survival and neurologic outcome in dogs. Am J Emerg Med 1987; 5:190–195.

    Article  PubMed  CAS  Google Scholar 

  65. Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med 1993; 21:1348–1358.

    Article  PubMed  CAS  Google Scholar 

  66. Bernard SA, Jones BM, Horne MK. Clinical trial of induced hypothermia in comatose survivors of out-of-hospital cardiac arrest. Ann Emerg Med 1997; 30:146–153.

    Article  PubMed  CAS  Google Scholar 

  67. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346:557–563.

    Article  PubMed  Google Scholar 

  68. Hickey RW, Ferimer H, Alexander HL, et al. Delayed, spontaneous hypothermia reduces neuronal damage after asphyxial cardiac arrest in rats. Crit Care Med 2000; 28:3511,3516.

    Article  PubMed  CAS  Google Scholar 

  69. Cummins RO, Chamberlain D, Hazinski MF, et al. Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in-hospital ‘Utstein style’. American Heart Association. Circulation 1997; 95:2213–2239.

    PubMed  CAS  Google Scholar 

  70. Aitkenhead AR, Bahr SJ, Cavaliere F, et.al. Animal research in cardiopulmonary resusciation: revised recommendations of a working party of the European Academy of Anaesthesiology. Eur J Anaestheiol 1990; 7:83–87.

    Google Scholar 

  71. Idris AH, Becker LB, Ornato JP, et al. Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a task force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine. Writing Group. Circulation 1996; 94:2324–2336.

    PubMed  CAS  Google Scholar 

  72. Idris AH, Becker LB, Wenzel V, Fuerst RS, Gravenstein N. Lack of uniform definitions and reporting in laboratory models of cardiac arrest: a review of the literature and a proposal for guidelines. Ann Emerg Med 1994; 23:9–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ward, K.R., Barbee, R.W. (2005). Animal Models of Resuscitation. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:683

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:683

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics