Skip to main content

Pediatric Cardiopulmonary Resuscitation

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1329 Accesses

Abstract

Cardiovascular disease remains the most common cause of disease-related death in the United States, resulting in approx 1 million deaths per year. It is estimated that 400,000–460,000 Americans will die from cardiac arrest (CA) each year, nearly 90% in prehospital settings (1,2). Data regarding the incidence of unexpected childhood cardiopulmonary arrest (CPA) is less robust, but the best recent data suggest that approx 16,000 American children suffer a CA each year with an annual incidence of roughly 20 out of 100,000 children (3,4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American Heart Association in collaboration with International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science, Part 6: Advanced Cardiovascular Life Support: 7B: Understanding the Algorithm Approach to ACLS. Circulation 2000; 102(Suppl): I140,I141.

    Google Scholar 

  2. American Heart Association in collaboration with International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science, Part 12: From Science to Survival: Strengthening the Chain of Survival in Every Community. Circulation 2000; 102(Suppl): I358–I370.

    Google Scholar 

  3. Seidel JS, et al. Pediatric prehospital care in urban and rural areas. Pediatrics 1991; 88: 681–690.

    PubMed  CAS  Google Scholar 

  4. Young KD, Seidel JS. Pediatric cardiopulmonary resuscitation: a collective review. Ann Emerg Med 1999; 33:195–205.

    Article  PubMed  CAS  Google Scholar 

  5. Appleton GO, et al. CPR and the single rescuer: at what age should you “call first” rather than “call fast”? Ann Emerg Med 1995; 25:492–494.

    Article  PubMed  CAS  Google Scholar 

  6. Mogayzel C, et al. Out-of-hospital ventricular fibrillation in children and adolescents: causes and outcomes. Ann Emerg Med 1995; 25:484–491.

    Article  PubMed  CAS  Google Scholar 

  7. Hazinski MF. Is pediatric resuscitation unique? Relative merits of early CPR and ventilation versus early defibrillation for young victims of prehospital cardiac arrest. Ann Emerg Med 1995; 25:540–543.

    PubMed  CAS  Google Scholar 

  8. Sirbaugh PE, et al. A prospective, population-based study of the demographics, epidemiology, management, and outcome of out-of-hospital pediatric cardiopulmonary arrest [published correction appears in Ann Emerg Med 1999; 33:358]. Ann Emerg Med 1999; 33:174–184.

    Article  PubMed  CAS  Google Scholar 

  9. Liberthson RR. Sudden death from cardiac causes in children and young adults. N Engl J Med 1996; 334:1039–1044.

    Article  PubMed  CAS  Google Scholar 

  10. Maron BJ, et al. Clinical profile and spectrum of commotio cordis. JAMA 2002; 287:1142–1146.

    Article  PubMed  Google Scholar 

  11. Part 10: pediatric advanced life support. Resuscitation 2000; 46:343–399.

    Google Scholar 

  12. Zaritsky A. Cardiopulmonary resuscitation in children. Clin Chest Med 1987; 8:561–571.

    PubMed  CAS  Google Scholar 

  13. Reis AG, et al. A prospective investigation into the epidemiology of in-hospital pediatric cardiopulmonary resuscitation using the international Utstein reporting style. Pediatrics 2002; 109:200–209.

    Article  PubMed  Google Scholar 

  14. Kuisma M, Suominen P, Korpela R. Paediatric out-of-hospital cardiac arrests: epidemiology and outcome. Resuscitation 1995; 30:141–150.

    Article  PubMed  CAS  Google Scholar 

  15. Suominen P, et al. Utstein style reporting of in-hospital paediatric cardiopulmonary resuscitation. Resuscitation 2000; 45:17–25.

    Article  PubMed  CAS  Google Scholar 

  16. Fiser DH. Assessing the outcome of pediatric intensive care. J Pediatr 1992; 121:68–74.

    Article  PubMed  CAS  Google Scholar 

  17. American Heart Association in collaboration with International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science, Part 6: Advanced Cardiovascular Life Support: Section 8: Postresuscitation Care. Circulation 2000; 102(Suppl):I166–I171.

    Google Scholar 

  18. Yakaitis RW, Otto CW, Blitt CD. Relative importance of alpha and beta adrenergic receptors during resuscitation. Crit Care Med 1979; 7:293–296.

    Article  PubMed  CAS  Google Scholar 

  19. Otto CW, Yakaitis RW, Blitt, CD. Mechanism of action of epinephrine in resuscitation from asphyxial arrest. Crit Care Med 1981; 9:364,365.

    PubMed  CAS  Google Scholar 

  20. American Heart Association in collaboration with International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Consensus on Science, Part 9: Pediatric Basic Life Support. Circulation 2000; 102(Suppl):I253–I290.

    Google Scholar 

  21. Nadkarni VM, et al. Survival outcome for in-hospital pulseless cardiac arrest reported to the National Registry of CPR is better for children than adults [abstract]. Crit Care Med 2003; 30(Suppl):A14.

    Google Scholar 

  22. Zaritsky A, et al. Recommended guidelines for uniform reporting of pediatric advanced life support: the pediatric Utstein style. A statement for healthcare professionals from the American Academy of Pediatrics, the American Heart Association, and the European Resuscitation Council. Circulation 1995; 92: 2006–2020.

    PubMed  CAS  Google Scholar 

  23. Cummins RO, et al. Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in-hospital ‘Utstein style’. American Heart Association. Circulation 1997; 95:2213–2239.

    PubMed  CAS  Google Scholar 

  24. Chamnanvanakij S, Perlman JM. Outcome following cardiopulmonary resuscitation in the neonate requiring ventilatory assistance. Resuscitation 2000; 45:173–180.

    Article  PubMed  CAS  Google Scholar 

  25. Perlman JM, Risser R. Cardiopulmonary resuscitation in the delivery room: associated clinical events. Arch Pediatr Adolesc Med 1995; 149:20–25.

    PubMed  CAS  Google Scholar 

  26. Wyckoff MH, Perlman J, Niermeyer S. Medications during resuscitation—what is the evidence? Semin Neonatol 2001; 6:251–259.

    Article  PubMed  CAS  Google Scholar 

  27. Slonim AD, et al. Cardiopulmonary resuscitation in pediatric intensive care units. Crit Care Med 1997; 25:1951–1955.

    Article  PubMed  CAS  Google Scholar 

  28. Parra DA, et al. Outcome of cardiopulmonary resuscitation in a pediatric cardiac intensive care unit. Crit Care Med 2000; 28:3296–3300.

    Article  PubMed  CAS  Google Scholar 

  29. Dalton HJ, et al. Extracorporeal membrane oxygenation for cardiac rescue in children with severe myocardial dysfunction. Crit Care Med 1993; 21:1020–1028.

    Article  PubMed  CAS  Google Scholar 

  30. del Nido PJ, et al. Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery. Circulation 1992; 86(Suppl):II300–II304.

    PubMed  Google Scholar 

  31. Nadkarni V, et al. Pediatric resuscitation: an advisory statement from the Pediatric Working Group of the International Liaison Committee on Resuscitation. Circulation 1997:95:2185–2195.

    PubMed  CAS  Google Scholar 

  32. Peberdy MA, et al. Cardiopulmonary resuscitation of adults in the hospital: a report of 14720 cardiac arrests from the National Registry of Cardiopulmonary Resuscitation. Resuscitation 2003; 58:297–308.

    Article  PubMed  Google Scholar 

  33. Dieckmann RA, Vardis R. High-dose epinephrine in pediatric out-of-hospital cardiopulmonary arrest. Pediatrics 1995; 95:901–913.

    PubMed  CAS  Google Scholar 

  34. Zaritsky A, et al. CPR in children. Ann Emerg Med 1987; 16:1107–1111.

    Article  PubMed  CAS  Google Scholar 

  35. Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. JAMA 1960; 173: 1064–1067.

    PubMed  CAS  Google Scholar 

  36. Becker, LB, et al. A reappraisal of mouth-to-mouth ventilation during bystander-initiated cardiopulmonary resuscitation. A statement for healthcare professionals from the Ventilation Working Group of the Basic Life Support and Pediatric Life Support Subcommittees, American Heart Association. Resuscitation 1997; 35:189–201.

    Article  PubMed  CAS  Google Scholar 

  37. Berg RA, et al. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest. Crit Care Med 1999; 27:1893–1899.

    Article  PubMed  CAS  Google Scholar 

  38. Berg RA, et al. “Bystander” chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless “cardiac arrest”. Circulation 2000; 101:1743–1748.

    PubMed  CAS  Google Scholar 

  39. Hickey RW, et al. Pediatric patients requiring CPR in the prehospital setting. Ann Emerg Med 1995; 25:495–501.

    Article  PubMed  CAS  Google Scholar 

  40. Cobb LA, et al. Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 1999; 281:1182–1188.

    Article  PubMed  CAS  Google Scholar 

  41. Hallstrom A, et al. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med 2000; 342:1546–1553.

    Article  PubMed  CAS  Google Scholar 

  42. Gausche M, et al. Effect of out-of-hospital pediatric endotracheal intubation on survival and neurological outcome: a controlled clinical trial. JAMA 2000:283:783–790.

    Article  PubMed  CAS  Google Scholar 

  43. Orlowski JP. Optimum position for external cardiac compression in infants and young children. Ann Emerg Med 1986; 15:667–673.

    Article  PubMed  CAS  Google Scholar 

  44. Orlowski JP. Mechanisms of blood flow during CPR. Circulation 1980; 62:1141.

    PubMed  CAS  Google Scholar 

  45. Finholt DA, et al. The heart is under the lower third of the sternum: implications for external cardiac massage. Am J Dis Child 1986; 140:646–649.

    PubMed  CAS  Google Scholar 

  46. Part 9: pediatric basic life support. Resuscitation 2000; 46:301–341.

    Google Scholar 

  47. Paradis NA, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 1990; 263:1106–1113.

    Article  PubMed  CAS  Google Scholar 

  48. Berg RA, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 2001; 104: 2465–2470.

    Article  PubMed  CAS  Google Scholar 

  49. Sanders AB, et al. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Ann Emerg Med 2002; 40:553–562.

    Article  PubMed  Google Scholar 

  50. Kern KB, et al. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation 2002; 105:645–649.

    Article  PubMed  Google Scholar 

  51. Babbs CF, Kern KB. Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation 2002; 54:147–157.

    Article  PubMed  Google Scholar 

  52. Berg RA, et al. Assisted ventilation does not improve outcome in a porcine model of single-rescuer bystander cardiopulmonary resuscitation. Circulation 1997; 95:1635–1641.

    PubMed  CAS  Google Scholar 

  53. Berg RA, et al. Assisted ventilation during ‘bystander’ CPR in a swine acute myocardial infarction model does not improve outcome. Circulation 1997; 96:4364–4371.

    PubMed  CAS  Google Scholar 

  54. Rea TD, et al. Dispatcher-assisted cardiopulmonary resuscitation and survival in cardiac arrest. Circulation 2001; 104:2513–2516.

    Article  PubMed  CAS  Google Scholar 

  55. Hallstrom AP. Dispatcher-assisted “phone” cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. Crit Care Med 2000; 28(Suppl):N190–N192.

    Article  PubMed  CAS  Google Scholar 

  56. Berg RA, et al. Initial end-tidal CO2 is markedly elevated during cardiopulmonary resuscitation after asphyxial cardiac arrest. Pediatr Emerg Care 1996; 12:245–248.

    Article  PubMed  CAS  Google Scholar 

  57. Babbs CF, Nadkarni V. Optimizing chest compression to rescue ventilation ratios during one-rescuer CPR by professionals and lay persons: children are not just little adults. Resuscitation 2004; 61:173–181

    Article  PubMed  Google Scholar 

  58. Kinney SB, Tibballs J. An analysis of the efficacy of bag-valve-mask ventilation and chest compression during different compression-ventilation ratios in manikin-simulated paediatric resuscitation. Resuscitation 2000; 43:115–120.

    Article  PubMed  CAS  Google Scholar 

  59. Halperin HR, et al. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation 1986; 73:539–550.

    PubMed  CAS  Google Scholar 

  60. Dean JM, et al. Improved blood flow during prolonged cardiopulmonary resuscitation with 30% duty cycle in infant pigs. Circulation 1991; 84:896–904.

    PubMed  CAS  Google Scholar 

  61. Dean JM, et al. Age-related changes in chest geometry during cardiopulmonary resuscitation. J Appl Physiol 1987; 62:2212–2219.

    Article  PubMed  CAS  Google Scholar 

  62. Halperin H, et al. Cardiopulmonary resuscitation with a hydraulic-pneumatic band. Crit Care Med 2000; 28(Suppl):N203–N206.

    Article  PubMed  CAS  Google Scholar 

  63. Halperin HR, et al. Vest inflation without simultaneous ventilation during cardiac arrest in dogs: improved survival from prolonged cardiopulmonary resuscitation. Circulation 1986; 74:1407–1415.

    PubMed  CAS  Google Scholar 

  64. Halperin HR, et al. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med 1993; 329:762–768.

    Article  PubMed  CAS  Google Scholar 

  65. Halperin HR, Weisfeldt ML. New approaches to CPR. Four hands, a plunger, or a vest [editorial]. JAMA 1992; 267:2940,2941.

    Article  PubMed  CAS  Google Scholar 

  66. David R. Closed chest cardiac massage in the newborn infant. Pediatrics 1988; 81:552–554.

    PubMed  CAS  Google Scholar 

  67. Menegazzi JJ, et al. Two-thumb versus two-finger chest compression during CPR in a swine infant model of cardiac arrest. Ann Emerg Med 1993; 22:240–243.

    Article  PubMed  CAS  Google Scholar 

  68. Thaler MM, Stobie GH. An improved technique of external cardiac compression in infants and young children. N Engl J Med 1963; 269:606–610.

    Article  PubMed  CAS  Google Scholar 

  69. Whitelaw CC, Slywka B, Goldsmith LJ. Comparison of a two-finger versus two-thumb method for chest compressions by healthcare providers in an infant mechanical model. Resuscitation 2000; 43:213–216.

    Article  PubMed  CAS  Google Scholar 

  70. Sanders A, et al. Expired pCO2 as an index of coronary perfusion pressure. Am J Emerg Med 1985; 3: 147–149.

    Article  PubMed  CAS  Google Scholar 

  71. Sanders A, Ewy G, Taft T. Prognostic and therapeutic importance of the aortic diastolic pressure in resuscitation from cardiac arrest. Crit Care Med 1984; 12:871–873.

    Article  PubMed  CAS  Google Scholar 

  72. Kern KB, et al. Changes in expired end-tidal carbon dioxide during cardiopulmonary resuscitation in dogs: a prognostic guide for resuscitation efforts. J Am Coll Cardiol 1989:13:1184–1189.

    PubMed  CAS  Google Scholar 

  73. Sanders AB, et al. Expired PCO2 as a prognostic indicator of successful resuscitation from cardiac arrest. Ann Emerg Med 1985; 14:948–952.

    Article  PubMed  CAS  Google Scholar 

  74. Bhende MS, Karasic DG, Karasic RB. End-tidal carbon dioxide changes during cardiopulmonary resuscitation after experimental asphyxial cardiac arrest. Am J Emerg Med 1996; 14:349,350.

    Article  PubMed  CAS  Google Scholar 

  75. Bhende MS, Thompson AE. Evaluation of an end-tidal CO2 detector during pediatric cardiopulmonary resuscitation. Pediatrics 1995; 95:395–399.

    PubMed  CAS  Google Scholar 

  76. Sheikh A, Brogan T. Outcome and cost of open-and closed-chest cardiopulmonary resuscitation in pediatric cardiac arrests. Pediatrics 1994; 93:392–398.

    PubMed  CAS  Google Scholar 

  77. Beaver BL, et al. Efficacy of emergency room thoracotomy in pediatric trauma. J Pediatr Surg 1987; 22:19–23.

    Article  PubMed  CAS  Google Scholar 

  78. Calkins CM, et al. A critical analysis of outcome for children sustaining cardiac arrest after blunt trauma. J Pediatr Surg 2002; 37:180–184.

    Article  PubMed  Google Scholar 

  79. Fisher B, Worthen M. Cardiac arrest induced by blunt trauma in children. Pediatr Emerg Care 1999; 15:274–276.

    PubMed  CAS  Google Scholar 

  80. Li G, et al. Cardiopulmonary resuscitation in pediatric trauma patients: survival and functional outcome. J Trauma 1999; 47:1–7.

    PubMed  CAS  Google Scholar 

  81. Babbs CF. CPR techniques that combine chest and abdominal compression and decompression: hemodynamic insights from a spreadsheet model. Circulation 1999; 100:2146–2152.

    PubMed  CAS  Google Scholar 

  82. Beattie C, et al. Mechanisms of blood flow during pneumatic vest cardiopulmonary resuscitation. J Appl Physiol 1991; 70:454–465.

    PubMed  CAS  Google Scholar 

  83. Babbs CF. Circulatory adjuncts. Newer methods of cardiopulmonary resuscitation. Cardiol Clin 2002; 20:37–59.

    Article  PubMed  Google Scholar 

  84. Chang MW, et al. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest 1994; 106:1250–1259.

    Article  PubMed  CAS  Google Scholar 

  85. Cohen T, et al. A comparison of active compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for cardiac arrests occurring in the hospital. N Engl K Med 1993; 329: 1918–1921.

    Article  CAS  Google Scholar 

  86. Lindner KH, Wenzel V. New mechanical methods for cardiopulmonary resuscitation (CPR): literature study and analysis of effectiveness [in German]. Anaesthesist 1997; 46:220–230.

    Article  PubMed  CAS  Google Scholar 

  87. Lurie K. Bringing back the nearly dead. The hope and the challenge. Minn Med 2002; 85:39–42.

    PubMed  Google Scholar 

  88. Babbs CF. Efficacy of interposed abdominal compression-cardiopulmonary resuscitation (CPR), active compression and decompression-CPR and Lifestick CPR: basic physiology in a spreadsheet model. Crit Care Med 2000; 28(Suppl): N199–N202.

    Article  PubMed  CAS  Google Scholar 

  89. Hanouz JL, et al. Insertion of the minimally invasive direct cardiac massage device (MIDCM): training on human cadavers. Resuscitation 2002; 52:49–53.

    Article  PubMed  Google Scholar 

  90. Paiva EF, et al. Minimally invasive direct cardiac massage versus closed-chest cardiopulmonary resuscitation in a porcine model of prolonged ventricular fibrillation cardiac arrest. Resuscitation 2000; 47:287–299.

    Article  PubMed  CAS  Google Scholar 

  91. Smith T. Alternative cardiopulmonary resuscitation devices. Curr Opin Crit Care, 2002; 8:219–223.

    Article  PubMed  Google Scholar 

  92. Langhelle A, et al. Inspiratory impedance threshold valve during CPR. Resuscitation 2002; 52: 39–48.

    Article  PubMed  Google Scholar 

  93. Lurie K, et al. Use of an inspiratory impedance threshold valve during cardiopulmonary resuscitation: a progress report. Resuscitation 2000; 44:219–230.

    Article  PubMed  CAS  Google Scholar 

  94. Lurie K, et al. Improving the efficiency of cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Crit Care Med 2000; 28(Suppl):N207–N209.

    Article  PubMed  CAS  Google Scholar 

  95. Lurie KG, et al. Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg 2001; 93:649–655.

    Article  PubMed  CAS  Google Scholar 

  96. Lurie KG, et al. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation 2002; 105:124–129.

    Article  PubMed  Google Scholar 

  97. Tecklenburg FW, et al. Pediatric ECMO for severe quinidine cardiotoxicity. Pediatr Emerg Care 1997; 13:111–113.

    Article  PubMed  CAS  Google Scholar 

  98. Thalmann M, et al. Resuscitation in near drowning with extracorporeal membrane oxygenation. Ann Thorac Surg 2001; 72:607.608.

    Article  PubMed  Google Scholar 

  99. Morris MC, Nadkarni VM. Pediatric cardiopulmonary-cerebral resuscitation: an overview and future directions. Crit Care Clin 2003; 19:337–364.

    Article  PubMed  Google Scholar 

  100. Andropoulos DB, Soifer SJ, Schreiber MD. Plasma epinephrine concentrations after intraosseous and central venous injection during cardiopulmonary resuscitation in the lamb. J Pediatr 1990; 116: 312–315.

    Article  PubMed  CAS  Google Scholar 

  101. Banerjee S, et al. The intraosseous route is a suitable alternative to intravenous route for fluid resuscitation in severely dehydrated children. Indian Pediatr 1994; 31:1511–1520.

    PubMed  CAS  Google Scholar 

  102. Cameron JL, Fontanarosa PB, Passalaqua AM. A comparative study of peripheral to central circulation delivery times between intraosseous and intravenous injection using a radionuclide technique in normovolemic and hypovolemic canines. J Emerg Med 1989; 7:123–127.

    Article  PubMed  CAS  Google Scholar 

  103. Friedman FD. Intraosseous adenosine for the termination of supraventricular tachycardia in an infant. Ann Emerg Med 1996; 28:356–358.

    PubMed  CAS  Google Scholar 

  104. Getschman SJ, et al. Intraosseous adenosine. As effective as peripheral or central venous administration? Arch Pediatr Adolesc Med 1994; 148:616–619.

    PubMed  CAS  Google Scholar 

  105. Glaeser PW, et al. Five-year experience in prehospital intraosseous infusions in children and adults. Ann Emerg Med 1993; 22:1119–1124.

    Article  PubMed  CAS  Google Scholar 

  106. Herman MI, et al. Methylene blue by intraosseous infusion for methemoglobinemia. Ann Emerg Med 1999; 33:111–113.

    Article  PubMed  CAS  Google Scholar 

  107. Katan BS, Olshaker JS, Dickerson SE. Intraosseous infusion of muscle relaxants. Am J Emerg Med 1988; 6:353–354.

    Article  PubMed  CAS  Google Scholar 

  108. Kramer GC, et al. Resuscitation of hemorrhage with intraosseous infusion of hypertonic saline/dextran. Braz J Med Biol Res 1989; 22:283–286.

    PubMed  CAS  Google Scholar 

  109. Kruse JA, Vyskocil JJ, Haupt MT. Intraosseous infusions: a flexible option for the adult or child with delayed, difficult, or impossible conventional vascular access [editorial]. Crit Care Med 1994; 22:728,729.

    PubMed  CAS  Google Scholar 

  110. Orlowski JP, et al. Comparison study of intraosseous, central intravenous, and peripheral intravenous infusions of emergency drugs. Am J Dis Child 1990; 144:112–117.

    PubMed  CAS  Google Scholar 

  111. Prete MR, Hannan CJJ, and Burkle FMJ. Plasma atropine concentrations via intravenous, endotracheal, and intraosseous administration. Am J Emerg Med 1987; 5:101–104.

    Article  PubMed  CAS  Google Scholar 

  112. Voelckel WG, et al. Comparison of epinephrine with vasopressin on bone marrow blood flow in an animal model of hypovolemic shock and subsequent cardiac arrest. Crit Care Med 2001; 29:1587–1592.

    Article  PubMed  CAS  Google Scholar 

  113. Warren DW, et al. Pharmacokinetics from multiple intraosseous and peripheral intravenous site injections in normovolemic and hypovolemic pigs. Crit Care Med 1994; 22:838–843.

    Article  PubMed  CAS  Google Scholar 

  114. Abdelmoneim T, et al. Acid-base status of blood from intraosseous and mixed venous sites during prolonged cardiopulmonary resuscitation and drug infusions. Crit Care Med 1999; 27:1923–1928.

    Article  PubMed  CAS  Google Scholar 

  115. Brickman KR, et al. Typing and screening of blood from intraosseous access. Ann Emerg Med 1992; 21: 414–417.

    Article  PubMed  CAS  Google Scholar 

  116. Voelckel WG, et al. Intraosseous blood gases during hypothermia: correlation with arterial, mixed venous, and sagittal sinus blood. Crit Care Med 2000; 28:2915–2920.

    Article  PubMed  CAS  Google Scholar 

  117. Christensen DW, et al. Skin necrosis complicating intraosseous infusion. Pediatr Emerg Care 1991; 7:289,290.

    Article  PubMed  CAS  Google Scholar 

  118. Dedrick DK, et al. The effects of intraosseous infusion on the growth plate in a nestling rabbit model. Ann Emerg Med 1992; 21:494–497.

    Article  PubMed  CAS  Google Scholar 

  119. Fiallos M, et al. Fat embolism with the use of intraosseous infusion during cardiopulmonary resuscitation. Am J Med Sci 1997; 314:73–79.

    Article  PubMed  CAS  Google Scholar 

  120. Fiser RT, et al. Tibial length following intraosseous infusion: a prospective, radiographic analysis. Pediatr Emerg Care 1997; 13:186–188.

    Article  PubMed  CAS  Google Scholar 

  121. Galpin RD, et al. Bilateral lower extremity compartment syndromes secondary to intraosseous fluid resuscitation. J Pediatr Orthop 1991; 11:773–776.

    PubMed  CAS  Google Scholar 

  122. Katz DS, Wojtowycz AR. Tibial fracture: a complication of intraosseous infusion. Am J Emerg Med 1994; 12:258,259.

    Article  PubMed  CAS  Google Scholar 

  123. LaSpada J, et al. Extravasation rates and complications of intraosseous needles during gravity and pressure infusion. Crit Care Med 1995; 23:2023–2028.

    Article  PubMed  CAS  Google Scholar 

  124. Moscati R, Moore GP. Compartment syndrome with resultant amputation following intraosseous infusion [letter]. Am J Emerg Med 1990; 8:470–471.

    Article  PubMed  CAS  Google Scholar 

  125. Rosovsky M, et al. Bilateral osteomyelitis due to intraosseous infusion: case report and review of the English-language literature. Pediatr Radiol 1994; 24:72,73.

    Article  PubMed  CAS  Google Scholar 

  126. Simmons CM, et al. Intraosseous extravasation complication reports. Ann Emerg Med 1994; 23: 363–366.

    PubMed  CAS  Google Scholar 

  127. Vidal R, Kissoon N, Gayle M. Compartment syndrome following intraosseous infusion. Pediatrics 1993; 91:1201,1202.

    PubMed  CAS  Google Scholar 

  128. Berg RA, et al. A randomized, blinded trial of high-dose epinephrine versus standard-dose epinephrine in a swine model of pediatric asphyxial cardiac arrest. Crit Care Med 1996; 24:1695–1700.

    Article  PubMed  CAS  Google Scholar 

  129. Berg RA, et al. High-dose epinephrine results in greater early mortality after resuscitation from prolonged cardiac arrest in pigs: a prospective, randomized study. Crit Care Med 1994; 22:282–290.

    PubMed  CAS  Google Scholar 

  130. Callaham M, et al. A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in prehospital cardiac arrest. JAMA 1992; 268:2667–2672.

    Article  PubMed  CAS  Google Scholar 

  131. Brown C, et al. A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. New Engl J Med 1992; 327:151–155.

    Article  Google Scholar 

  132. Callaham M, Barton CW, Kayser S. Potential complications of high-dose epinephrine therapy in patients resuscitated from cardiac arrest. JAMA 1991; 265:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  133. Callaham M, et al. A randomized clinical trial of high-dose epinephrine and norepinephrine versus standard-dose epinephrine in prehospital cardiac arrest. JAMA 1992; 268:2667–2672.

    Article  PubMed  CAS  Google Scholar 

  134. Carpenter TC, Stenmark KR. High-dose epinephrine is not superior to standard-dose epinephrine in pediatric in-hospital cardiopulmonary arrest. Pediatrics 1997; 99:403–408.

    Article  PubMed  CAS  Google Scholar 

  135. Goetting MG, Paradis NA. High-dose epinephrine improves outcome from pediatric cardiac arrest. Ann Emerg Med 1991; 20:22–26.

    Article  PubMed  CAS  Google Scholar 

  136. Gueugniaud PY, et al. A comparison of repeated high doses and repeated standard doses of epinephrine for cardiac arrest outside the hospital. European Epinephrine Study Group. N Engl J Med 1998; 339: 1595–1601.

    Article  PubMed  CAS  Google Scholar 

  137. Lindner KH, Ahnefeld FW, Prengel AW. Comparison of standard and high-dose adrenaline in the resuscitation of asystole and electromechanical dissociation. Acta Anaesthesiol Scand 1991; 35:253–256.

    PubMed  CAS  Google Scholar 

  138. Lipman J, et al. High-dose adrenaline in adult in-hospital asystolic cardiopulmonary resuscitation: a double-blind randomised trial. Anaesth Intensive Care 1993; 21:192–196.

    PubMed  CAS  Google Scholar 

  139. Niemann J, et al. Treatment of prolonged ventricular fibrillation: immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 1992; 85:281–287.

    PubMed  CAS  Google Scholar 

  140. Paradis NA, et al. The effect of standard-and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation. JAMA 1991; 265:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  141. Sherman BW, et al. High-dose versus standard-dose epinephrine treatment of cardiac arrest after failure of standard therapy. Pharmacotherapy 1997; 17:242–247.

    PubMed  CAS  Google Scholar 

  142. Stiell IG, et al. High-dose epinephrine in adult cardiac arrest. N Engl J Med 1992; 327: 1045–1050.

    Article  PubMed  CAS  Google Scholar 

  143. Achleitner U, et al. The effects of repeated doses of vasopressin or epinephrine on ventricular fibrillation in a porcine model of prolonged cardiopulmonary resuscitation. Anesth Analg 2000; 90:1067–1075.

    Article  PubMed  CAS  Google Scholar 

  144. Perondi MB, Reis AG, Paiva EF, Nadkarni VM, Berg RA. A comparison of high-dose and standard-dose epinephrine in children with cardiac arrest. N Engl J Med 2004; 350:1722–1730.

    Article  PubMed  CAS  Google Scholar 

  145. Argenziano M, et al. Arginine vasopressin in the management of vasodilatory hypotension after cardiac transplantation. J Heart Lung Transplant 1999; 18:814–817.

    Article  PubMed  CAS  Google Scholar 

  146. Babar SI, et al. Vasopressin versus epinephrine during cardiopulmonary resuscitation: a randomized swine outcome study. Resuscitation 1999; 41:185–192.

    Article  PubMed  CAS  Google Scholar 

  147. Babbs CF, et al. Use of pressors in the treatment of cardiac arrest. Ann Emerg Med 2001; 37(Suppl):S152–S162.

    Article  PubMed  CAS  Google Scholar 

  148. Chugh SS, Lurie KG, Lindner KH. Pressor with promise: using vasopressin in cardiopulmonary arrest. Circulation 1997; 96:2453,2454.

    PubMed  CAS  Google Scholar 

  149. Kern KB, Halperin HR, Field J. New guidelines for cardiopulmonary resuscitation and emergency cardiac care: changes in the management of cardiac arrest. JAMA 2001; 285:1267–1269.

    Article  PubMed  CAS  Google Scholar 

  150. Kono S, et al. Vasopressin and epinephrine are equally effective for CPR in a rat asphyxia model. Resuscitation 2002; 52:215–219.

    Article  PubMed  CAS  Google Scholar 

  151. Krismer AC, et al. The efficacy of epinephrine or vasopressin for resuscitation during epidural anesthesia. Anesth Analg 2001; 93:734–742.

    Article  PubMed  CAS  Google Scholar 

  152. Krismer AC, et al. Cardiopulmonary resuscitation during severe hypothermia in pigs: does epinephrine or vasopressin increase coronary perfusion pressure? Anesth Analg 2000:90:69–73.

    Article  PubMed  CAS  Google Scholar 

  153. Krismer AC, et al. The effects of endogenous and exogenous vasopressin during experimental cardiopulmonary resuscitation. Anesth Analg 2001; 92:1499–1504.

    Article  PubMed  CAS  Google Scholar 

  154. Krismer AC, et al. Arginine vasopressin during cardiopulmonary resuscitation and vasodilatory shock: current experience and future perspectives. Curr Opin Crit Care 2001; 7:157–169.

    Article  PubMed  CAS  Google Scholar 

  155. Lindner KH, et al. Effect of vasopressin on hemodynamic variables, organ blood flow, and acid-base status in a pig model of cardiopulmonary resuscitation. Anesth Analg 1993; 77:427–435.

    Article  PubMed  CAS  Google Scholar 

  156. Lindner KH, et al. Randomised comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation. Lancet 1997; 349:535–537.

    Article  PubMed  CAS  Google Scholar 

  157. Lindner KH, et al. Release of endogenous vasopressors during and after cardiopulmonary resuscitation. Heart 1996; 75:145–150.

    Article  PubMed  CAS  Google Scholar 

  158. Lindner KH, et al. Vasopressin administration in refractory cardiac arrest. Ann Intern Med 1996; 124:1061–1064.

    PubMed  CAS  Google Scholar 

  159. Lindner KH, et al. Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs. Circulation 1995; 91:215–221.

    PubMed  CAS  Google Scholar 

  160. Mayr VD, et al. Developing a vasopressor combination in a pig model of adult asphyxial cardiac arrest. Circulation 2001; 104:1651–1656.

    Article  PubMed  CAS  Google Scholar 

  161. Morley P. Vasopressin or epinephrine: which initial vasopressor for cardiac arrests? Lancet 2001; 358: 85,86.

    Article  PubMed  CAS  Google Scholar 

  162. Morris DC, et al. Vasopressin can increase coronary perfusion pressure during human cardiopulmonary resuscitation. Acad Emerg Med 1997; 4:878–883.

    PubMed  CAS  Google Scholar 

  163. Nozari A, Rubertsson S, Wiklund L. Differences in the pharmacodynamics of epinephrine and vasopressin during and after experimental cardiopulmonary resuscitation. Resuscitation 2001; 49:59–72.

    Article  PubMed  CAS  Google Scholar 

  164. Prengel AW, et al. Splanchnic and renal blood flow after cardiopulmonary resuscitation with epinephrine and vasopressin in pigs. Resuscitation 1998; 38:19–24.

    Article  PubMed  CAS  Google Scholar 

  165. Raedler C, et al. Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve. Anesth Analg 2002; 95:1496–1502, table of contents.

    Article  PubMed  Google Scholar 

  166. Stiell IG, et al. Vasopressin versus epinephrine for inhospital cardiac arrest: a randomised controlled trial. Lancet 2001; 358:105–109.

    Article  PubMed  CAS  Google Scholar 

  167. Voelckel WG, et al. Effects of vasopressin and epinephrine on splanchnic blood flow and renal function during and after cardiopulmonary resuscitation in pigs. Crit Care Med 2000; 28:1083–1088.

    Article  PubMed  CAS  Google Scholar 

  168. Voelckel WG, et al. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cardiac arrest. Circulation 1999; 36:1115–1118.

    Google Scholar 

  169. Voelckel WG, Lurie KG, McKnite S, et al. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cardiac arrest. Crit Care Med. 2000; 28:3777–3783.

    Article  PubMed  CAS  Google Scholar 

  170. Mann K, Berg RA, Nadkarni V. Beneficial effects of vasopressin in prolonged pediatric cardiac arrest: a case series. Resuscitation 2002; 52:149–156.

    Article  PubMed  CAS  Google Scholar 

  171. Katz K, et al. Vasopressin pressor effects in critically ill children during evaluation for brain death and organ recovery. Resuscitation 2000; 47:33–40.

    Article  PubMed  CAS  Google Scholar 

  172. Butt W. Septic shock. Pediatr Clin North Am 2001; 48:601–625.

    Article  PubMed  CAS  Google Scholar 

  173. Rosenzweig EB, et al. Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery. Circulation 1999; 100(Suppl):II182–II186.

    PubMed  CAS  Google Scholar 

  174. Dembo DH. Calcium in advanced life support. Crit Care Med 1981; 9:358,359.

    PubMed  CAS  Google Scholar 

  175. Harrison EE, Amey BD. The use of calcium in cardiac resuscitation. Am J Emerg Med 1983; 1: 267–273.

    Article  PubMed  CAS  Google Scholar 

  176. Urban P, et al. Cardiac arrest and blood ionized calcium levels. Ann Intern Med 1988; 109: 110–113.

    PubMed  CAS  Google Scholar 

  177. van Walraven C, et al. Do advanced cardiac life support drugs increase resuscitation rates from in-hospital cardiac arrest? The OTAC Study Group. Ann Emerg Med 1998; 32:544–553.

    Article  PubMed  Google Scholar 

  178. Yusuf S, et al. Routine medical management of acute myocardial infarction: lessons from overviews of recent randomized controlled trials. Circulation 1990; 82(Suppl):II117–II134.

    PubMed  CAS  Google Scholar 

  179. Ammari AN, Schulze KF. Uses and abuses of sodium bicarbonate in the neonatal intensive care unit. Curr Opin Pediatr 2002; 14:151–156.

    Article  PubMed  Google Scholar 

  180. Bar-Joseph G. Is sodium bicarbonate therapy during cardiopulmonary resuscitation really detrimental? [letter]. Crit Care Med 2000; 28:1693,1694.

    Article  PubMed  CAS  Google Scholar 

  181. Bar-Joseph G, et al. Clinical use of sodium bicarbonate during cardiopulmonary resuscitation—is it used sensibly? Resuscitation 2002; 54:47–55.

    Article  PubMed  Google Scholar 

  182. Cooper DJ, et al. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: a prospective, controlled clinical study. Ann Intern Med 1990; 112:492–498.

    PubMed  CAS  Google Scholar 

  183. Federiuk CS, et al. The effect of bicarbonate on resuscitation from cardiac arrest. Ann Emerg Med 1991; 20:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  184. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science 1985; 227:754–756.

    Article  PubMed  CAS  Google Scholar 

  185. Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion presssure [published correction appears in JAMA 1991; 266:3286]. JAMA 1991; 266:2121–2126.

    Article  PubMed  CAS  Google Scholar 

  186. Sanders AB, et al. The role of bicarbonate and fluid loading in improving resuscitation from prolonged cardiac arrest with rapid manual chest compression CPR. Ann Emerg Med 1990:19:1–7.

    Article  PubMed  CAS  Google Scholar 

  187. von Planta M, et al. Pathophysiologic and therapeutic implications of acid-base changes during CPR. Ann Emerg Med 1993; 22(Pt 2):404–410.

    Google Scholar 

  188. Weil MH, et al. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 1986; 315:153–156.

    Article  PubMed  CAS  Google Scholar 

  189. Bar-Joseph G, et al. Comparison of sodium bicarbonate, Carbicarb, and THAM during cardiopulmonary resuscitation in dogs. Crit Care Med 1998; 26:1397–1408.

    Article  PubMed  CAS  Google Scholar 

  190. Minuck M, Sharma GP. Comparison of THAM and sodium bicarbonate in resuscitation of the heart after ventricular fibrillation in dogs. Anesth Analg 1977; 56:38–45.

    Article  PubMed  CAS  Google Scholar 

  191. von Planta M, et al. Effects of tromethamine and sodium bicarbonate buffers during cardiac resuscitation. J Clin Pharmacol 1988; 28:594–599.

    Google Scholar 

  192. Wiklund L, et al. Effects of alkaline buffer administration on survival and myocardial energy metabolism in pigs subjected to ventricular fibrillation and closed chest CPR. Acta Anaesthesiol Scand 1990; 34:430–439.

    PubMed  CAS  Google Scholar 

  193. Rubertsson S, Wiklund L. Hemodynamic effects of epinephrine in combination with different alkaline buffers during experimental, open-chest, cardiopulmonary resuscitation. Crit Care Med 1993; 21:1051–1057.

    Article  PubMed  CAS  Google Scholar 

  194. Zaritsky A. Pediatric resuscitation pharmacology. Members of the Medications in Pediatric Resuscitation Panel. Ann Emerg Med 1993; 22(Pt 2): 445–455.

    Article  PubMed  CAS  Google Scholar 

  195. Berg RA, et al. Ventricular fibrillation in a swine model of acute pediatric asphyxial cardiac arrest. Resuscitation 1996; 33:147–53.

    Article  PubMed  CAS  Google Scholar 

  196. Nadkarni V. Ventricular fibrillation in the asphyxiated piglet model, in Ventricular Fibrillation: a Pediatric Problem. Quan L, Franklin WH, eds. Armonk, NY: Futura Publishers, 2000, pp. 43–54.

    Google Scholar 

  197. Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC). JAMA 1980; 244:453–509.

    Google Scholar 

  198. Gutgesell HP, et al. Energy dose for ventricular defibrillation of children. Pediatrics 1976; 58: 898–901.

    PubMed  CAS  Google Scholar 

  199. Atkins DL, et al. Pediatric defibrillation: importance of paddle size in determining transthoracic impedance. Pediatrics 1988; 82:914–918.

    PubMed  CAS  Google Scholar 

  200. Atkins DL, Kerber RE. Pediatric defibrillation: current flow is improved by using “adult” electrode paddles. Pediatrics 1994; 94:90–93.

    PubMed  CAS  Google Scholar 

  201. Tang W, et al. Fixed-energy biphasic waveform defibrillation in a pediatric model of cardiac arrest and resuscitation. Crit Care Med 2002; 30:2736–2741.

    Article  PubMed  Google Scholar 

  202. Berg RA, et al. Comparison of weight-based monophasic and fixed sequence biphasic defibrillation dosing for resuscitation in a model of pediatric prolonged cardiac arrest. J Am Coll Cardiol 2003; 41(Suppl):350.

    Article  Google Scholar 

  203. Anastasiou-Nana MI, et al. Effects of amiodarone on refractory ventricular fibrillation in acute myocardial infarction: experimental study. J Am Coll Cardiol 1994; 23:253–258.

    PubMed  CAS  Google Scholar 

  204. Connolly SJ. Meta-analysis of antiarrhythmic drug trials. Am J Cardiol 1999; 84:90R–93R.

    Article  PubMed  CAS  Google Scholar 

  205. Dorian P, et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N Engl J Med 2002; 346:884–890.

    Article  PubMed  CAS  Google Scholar 

  206. Figa FH, et al. Clinical efficacy and safety of intravenous Amiodarone in infants and children. Am J Cardiol 19941; 74:573–577.

    Article  PubMed  CAS  Google Scholar 

  207. Helmy I, et al. Use of intravenous amiodarone for emergency treatment of life-threatening ventricular arrhythmias. J Am Coll Cardiol 1988; 12:1015–1022.

    PubMed  CAS  Google Scholar 

  208. Kowey PR, et al. Randomized, double-blind comparison of intravenous amiodarone and bretylium in the treatment of patients with recurrent, hemodynamically destabilizing ventricular tachycardia or fibrillation. The Intravenous Amiodarone Multicenter Investigators Group. Circulation 1995; 92:3255–3263.

    PubMed  CAS  Google Scholar 

  209. Kudenchuk PJ. Intravenous antiarrhythmic drug therapy in the resuscitation from refractory ventricular arrhythmias. Am J Cardiol 1999; 84:52R–55R.

    Article  PubMed  CAS  Google Scholar 

  210. Kudenchuk, PJ, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 1999; 341:871–878.

    Article  PubMed  CAS  Google Scholar 

  211. Perry JC, et al. Intravenous amiodarone for life-threatening tachyarrhythmias in children and young adults. J Am Coll Cardiol 1993; 22:95–98.

    Article  PubMed  CAS  Google Scholar 

  212. Samson RA, et al. Use of automated external defibrillators for children: an update: an advisory statement from the pediatric advanced life support task force, International Liaison Committee on Resuscitation. Circulation 2003; 107:3250–3255.

    Article  PubMed  CAS  Google Scholar 

  213. Atkinson E, et al. Specificity and sensitivity of automated external defibrillator rhythm analysis in infants and children. Ann Emerg Med 2003; 42:185–196.

    Article  PubMed  Google Scholar 

  214. White RD, Hankins DG, Atkinson EJ. Patient outcomes following defibrillation with a low energy biphasic truncated exponential waveform in out-of-hospital cardiac arrest. Resuscitation 2001; 49:9–14.

    Article  PubMed  CAS  Google Scholar 

  215. Atkins DL, Hartley LL, York DK. Accurate recognition and effective treatment of ventricular fibrillation by automated external defibrillators in adolescents. Pediatrics 1998; 101(Pt 1):393–397.

    Article  PubMed  CAS  Google Scholar 

  216. Bain AC, et al. Multicenter study of principles-based waveforms for external defibrillation. Ann Emerg Med 2001; 37:5–12.

    Article  PubMed  CAS  Google Scholar 

  217. Bardy G, et al. Truncated biphasic pulses for transthoracic defibrillation. Circulation 1995; 91: 1768–1774.

    PubMed  CAS  Google Scholar 

  218. Bardy GH, et al. A prospective randomized evaluation of biphasic versus monophasic waveform pulses on defibrillation efficacy in humans. J Am Coll Cardiol 1989:14:728–733.

    PubMed  CAS  Google Scholar 

  219. Bardy GH, et al. Multicenter comparison of truncated biphasic shocks and standard damped sine wave monophasic shocks for transthoracic ventricular defibrillation. Transthoracic Investigators. Circulation 1996; 94: 2507–2514.

    PubMed  CAS  Google Scholar 

  220. Cummins RO, et al. Low-energy biphasic waveform defibrillation: evidence-based review applied to emergency cardiovascular care guidelines: a statement for healthcare professionals from the American Heart Association Committee on Emergency Cardiovascular Care and the Subcommittees on Basic Life Support, Advanced Cardiac Life Support, and Pediatric Resuscitation. Circulation, 1998; 97:1654–1667.

    PubMed  CAS  Google Scholar 

  221. Gliner BE, et al. Treatment of out-of-hospital cardiac arrest with a low-energy impedance-compensating biphasic waveform automatic external defibrillator. The LIFE Investigators. Biomed Instrum Technol 1998; 32: 631–644.

    PubMed  CAS  Google Scholar 

  222. Gliner BE, et al. Transthoracic defibrillation of swine with monophasic and biphasic waveforms. Circulation 1995; 92:1634–1643.

    PubMed  CAS  Google Scholar 

  223. Greene HL, et al. Comparison of monophasic and biphasic defibrillating pulse waveforms for transthoracic cardioversion. Biphasic Waveform Defibrillation Investigators. Am J Cardiol 1995; 75:1135–1139.

    Article  PubMed  CAS  Google Scholar 

  224. Higgins SL, et al. A comparison of biphasic and monophasic shocks for external defibrillation. Physio-Control Biphasic Investigators. Prehosp Emerg Care 2000; 4:305–313.

    Article  PubMed  CAS  Google Scholar 

  225. Killingsworth CR, et al. Defibrillation threshold and cardiac responses using an external biphasic defibrillator with pediatric and adult adhesive patches in pediatric-sized piglets. Resuscitation 2002; 55:177–85.

    Article  PubMed  Google Scholar 

  226. Martens PR, et al. Optimal Response to Cardiac Arrest study: defibrillation waveform effects. Resuscitation 2001; 49:233–243.

    Article  PubMed  CAS  Google Scholar 

  227. Walcott GP, et al. Mechanisms of defibrillation for monophasic and biphasic waveforms. Pacing Clin Electrophysiol 1994; 17(Pt 2):478–498.

    Article  PubMed  CAS  Google Scholar 

  228. Walker RG, et al. Comparison of a biphasic truncated exponential waveform to two standard monophasic waveforms for external defibrillation. J Am Col Cardiol 2000; 35(Suppl):400A.

    Google Scholar 

  229. White RD. Early out-of-hospital experience with an impedance-compensating low-energy biphasic waveform automatic external defibrillator. J Interv Card Electrophysiol 1997; 1:203–208.

    Article  PubMed  CAS  Google Scholar 

  230. van Alem AP, et al. A prospective, randomised and blinded comparison of first shock success of monophasic and biphasic waveforms in out-of-hospital cardiac arrest. Resuscitation, 2003; 58:17–24.

    Article  PubMed  Google Scholar 

  231. van Alem AP, Sanou BT, Koster RW. Interruption of cardiopulmonary resuscitation with the use of the automated external defibrillator in out-of-hospital cardiac arrest. Ann Emerg Med 2003; 42:449–457.

    Article  PubMed  Google Scholar 

  232. van Alem AP, et al. Use of automated external defibrillator by first responders in out of hospital cardiac arrest: prospective controlled trial. BMJ 2003; 327:1312.

    Article  PubMed  Google Scholar 

  233. Tang W, et al. Pediatric fixed energy biphasic waveform defibrillation using a standard AED and special pediatric electrodes [abstract]. Circulation 2001; 104(Suppl):Abstract no. 41222.

    Google Scholar 

  234. Berg RA, et al. Automated external defibrillation versus manual defibrillation for prolonged ventricular fibrillation: lethal delays of chest compressions before and after countershocks. Ann Emerg Med 2003; 42: 458–467.

    Article  PubMed  Google Scholar 

  235. Hickey RW, et al. Hypothermia and hyperthermia in children after resuscitation from cardiac arrest. Pediatrics 2000; 106(Pt 1):118–122.

    Article  PubMed  CAS  Google Scholar 

  236. Sterz F, et al. Mild resuscitative hypothermia and outcome after cardiopulmonary resuscitation. J Neurosurg Anesthesiol 1996; 8:88–96.

    Article  PubMed  CAS  Google Scholar 

  237. Holzer M, et al. Mild hypothermia and outcome after CPR. Hypothermia for Cardiac Arrest (HACA) Study Group. Acta Anaesthesiol Scand Suppl 1997; 111:55–58.

    PubMed  CAS  Google Scholar 

  238. Zeiner A, et al. Mild resuscitative hypothermia to improve neurological outcome after cardiac arrest. A clinical feasibility trial. Hypothermia After Cardiac Arrest (HACA) Study Group. Stroke 2000; 31:86–94.

    PubMed  CAS  Google Scholar 

  239. Bernard S, et al. Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest: a preliminary report. Resuscitation 2003; 56:9–13.

    Article  PubMed  Google Scholar 

  240. Bernard SA, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346:557–563.

    Article  PubMed  Google Scholar 

  241. Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346:549–556.

    Google Scholar 

  242. Broderick JP, et al. Hyperglycemia and hemorrhagic transformation of cerebral infarcts. Stroke 1995; 26:484–487.

    PubMed  CAS  Google Scholar 

  243. Cherian L, Goodman JC, Robertson CS. Hyperglycemia increases brain injury caused by secondary ischemia after cortical impact injury in rats. Crit Care Med 1997; 25:1378–1383.

    Article  PubMed  CAS  Google Scholar 

  244. Pulsinelli WA, et al. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 1982; 32:1239–1246.

    PubMed  CAS  Google Scholar 

  245. Van den Berghe G, et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345: 1359–1367.

    Article  PubMed  Google Scholar 

  246. Yip PK, et al. Effect of plasma glucose on infarct size in focal cerebral ischemia-reperfusion. Neurology 1991; 41:899–905.

    PubMed  CAS  Google Scholar 

  247. Mullner M, et al. Blood glucose concentration after cardiopulmonary resuscitation influences functional neurological recovery in human cardiac arrest survivors. J Cereb Blood Flow Metab 1997; 17: 430–436.

    Article  PubMed  CAS  Google Scholar 

  248. Krukenkamp I, et al. Direct effect of high-dose insulin on the depressed heart after beta-blockade or ischemia. Thorac Cardiovasc Surg 1986; 34:305–309.

    PubMed  CAS  Google Scholar 

  249. Safar P, et al. Systematic development of cerebral resuscitation after cardiac arrest. Three promising treatments: cardiopulmonary bypass, hypertensive hemodilution, and mild hypothermia. Acta Neurochir Suppl (Wien) 1993; 57:110–121.

    CAS  Google Scholar 

  250. Safar P, et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 1996; 27:105–113.

    PubMed  CAS  Google Scholar 

  251. Sterz F, et al. Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke 1990; 21: 1178–1184.

    PubMed  CAS  Google Scholar 

  252. Mullner M, et al. Arterial blood pressure after human cardiac arrest and neurological recovery. Stroke 1996; 27:59–62.

    PubMed  CAS  Google Scholar 

  253. Carcillo JA, Davis AL, Zaritsky A. Role of early fluid resuscitation in pediatric septic shock. JAMA 1991; 266:1242–1245.

    Article  PubMed  CAS  Google Scholar 

  254. Ceneviva G, et al. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 1998; 102:19.

    Article  Google Scholar 

  255. Angus DC, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  256. Carcillo JA. Pediatric septic shock and multiple organ failure. Crit Care Clin 2003; 19:413–440, viii.

    Article  PubMed  Google Scholar 

  257. Carcillo JA, Fields AI. [Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock]. J Pediatr (Rio J) 2002; 78:449–466.

    Article  Google Scholar 

  258. Despond O, et al. Pediatric sepsis and multiple organ dysfunction syndrome. Curr Opin Pediatr 2001; 13:247–253.

    Article  PubMed  CAS  Google Scholar 

  259. Han YY, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics 2003; 112:793–799.

    Article  PubMed  Google Scholar 

  260. Watson RS, et al. The epidemiology of severe sepsis in children in the United States. Am J Respir Crit Care Med 2003; 167:695–701.

    Article  PubMed  Google Scholar 

  261. Berg RA, Padbury JF. Sulfoconjugation and renal excretion contribute to the interpatient variation of exogenous catecholamine clearance in critically ill children. Crit Care Med 1997; 25:1247–1251.

    Article  PubMed  CAS  Google Scholar 

  262. Suominen P, et al. Prehospital care and survival of pediatric patients with blunt trauma. J Pediatr Surg 1998; 33:1388–1392.

    Article  PubMed  CAS  Google Scholar 

  263. Suominen P, et al. Impact of age, submersion time and water temperature on outcome in near-drowning. Resuscitation 2002; 52:247–254.

    Article  PubMed  CAS  Google Scholar 

  264. Suominen P, Rasanen J, Kivioja A. Efficacy of cardiopulmonary resuscitation in pulseless paediatric trauma patients. Resuscitation 1998; 36:9–13.

    Article  PubMed  CAS  Google Scholar 

  265. Cummins RO, Chamberlain DA. AHA Medical/Scientific Statement. Recommended Guidelines for Uniform Reporting Data From Out-of-Hospital Cardiac Arrest: The Utstein Style. 1991.

    Google Scholar 

  266. Idris AH, et al. Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a Task Force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine. Resuscitation 1996; 33:69–84.

    Article  PubMed  CAS  Google Scholar 

  267. Becker LB, et al. The PULSE initiative: scientific priorities and strategic planning for resuscitation research and life saving therapies. Circulation 2002; 105:2562–2570.

    Article  PubMed  Google Scholar 

  268. Baren JM, et al. An approach to community consultation prior to initiating an emergency research study incorporating a waiver of informed consent. Acad Emerg Med 1999; 6:1210–1215.

    PubMed  CAS  Google Scholar 

  269. Tunstall-Pedoe H, et al. Survey of 3765 cardiopulmonary resuscitations in British hospitals (the BRESUS Study): methods and overall results. BMJ 1992; 304:1347–1351.

    PubMed  CAS  Google Scholar 

  270. Gausche M, et al. A prospective, randomized study of the effect of out-of-hospital pediatric intubation on patient outcome. Acad Emerg Med 1998; 5:428.

    Article  Google Scholar 

  271. Schindler MB, et al. Outcome of out-of-hospital cardiac or respiratory arrest in children. N Engl J Med 1996; 335:1473–1479.

    Article  PubMed  CAS  Google Scholar 

  272. Suominen P, et al. Paediatric cardiac arrest and resuscitation provided by physician-staffed emergency care units. Acta Anaesthesiol Scand 1997; 41:260–265.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Berg, R.A., Nadkarni, V.M. (2005). Pediatric Cardiopulmonary Resuscitation. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:609

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:609

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics