Skip to main content

Postresuscitation Cerebral Dysfunction

Prevention and Treatment

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1342 Accesses

Abstract

Permanent brain damage caused by ischemia and reperfusion that results from disease processes such as stroke and cardiac arrest (CA) with resuscitation has been estimated to affect approx 200,000 patients in the United States annually (1). Neuronal damage from stroke and CA occur by different mechanistic models of injury. In ischemic stroke, only a portion of the brain is at risk, and the ischemia is only complete in the center of the vulnerable area. This central area of dense ischemia is surrounded by a penumbral zone in which blood flow is diminished but not completely lost. As opposed to CA with resuscitation, flow ceases altogether and the entire brain is at risk for a transient period of complete ischemia followed by reperfusion (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. White BC, Grossman LI, O’Neil BJ, et al. Global brain ischemia and reperfusion. Ann Emerg Med 1996; 27:588–594.

    Article  PubMed  CAS  Google Scholar 

  2. Singh NC, Kochanek PM, Schiding JK, Melick JA, Nemoto EM: Uncoupled cerebral blood flow and metabolism after severe global ischemia in rats. J Cereb Blood Flow Metab 1992; 12:802–808.

    PubMed  CAS  Google Scholar 

  3. Safar P. Brain resuscitation. Special symposium issue. Crit Care Med 1978; 6:199–214.

    PubMed  CAS  Google Scholar 

  4. Abramson NS, Sutton-Tyrell K, Safar P. A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial II Study Group. N Engl J Med 1991; 324:1225–1231.

    Article  Google Scholar 

  5. Eisenberg MS, Horwood BT, Cummins RO, Reynolds-Haertle TR. Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 1990; 19:179–186.

    Article  PubMed  CAS  Google Scholar 

  6. Lucking SE, Pollack MM, Fields AI. Shock following generalized hypoxic-ischemic injury in previously healthy infants and children. J Pediatr 1986; 108:359–364.

    Article  PubMed  CAS  Google Scholar 

  7. Kern KB, Hilwig RW, Berg RA, et al. Postresuscitaion left ventricular dysfunction systolic and diastolic dysfunction: treatment with dobutamine. Circulation 1997; 95:2610–2613.

    PubMed  CAS  Google Scholar 

  8. ACCP-SCCM Consensus Conference Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 101:1644–1655.

    Google Scholar 

  9. Oppert M, Gleiter CH, Müller C, et al. Kinetics and characteristics of an acute phase response following cardiac arrest. Intensive Care Med 1999; 25:1386–1394.

    Article  PubMed  CAS  Google Scholar 

  10. Shapiro HM: Intracranial hypertension, therapeutic and anesthetic considerations. Anesthesiology 1975; 43:445–471.

    Article  PubMed  CAS  Google Scholar 

  11. Cantu RC, Ames A, DiGancinto G, et al: Hypotension: a major factor limiting recovery from cerebral ischemia. J Surg Res 1969; 9:525–529.

    Article  PubMed  CAS  Google Scholar 

  12. Enna B, Wenzel V, Schocke M, et al. Excellent coronary perfusion pressure during cardiopulmonary resuscitation is not good enough to ensure long-term survival with good neurological outcome: a porcine case report. Resuscitation 2000; 47:41–49.

    Article  PubMed  CAS  Google Scholar 

  13. Homer-Vanniasinkam S, Crinnion JN, Gough MJ. Post-ischemic organ dysfunction: a review. Eur J Vasc Endovasc Surg 1997; 14:195–203.

    Article  PubMed  CAS  Google Scholar 

  14. Nielsen VG, Tan S, Baird MS, McCammon AT, Parks DA. Gastric intramucosal pH and multiple organ injury: impact of ischemia-reperfusion and xanthine oxidase. Crit Care Med 1996; 24:1339–1344.

    Article  PubMed  CAS  Google Scholar 

  15. Safar P. Cerebral resuscitation after cardiac arrest: A review. Circulation 1986; 74(Suppl):IV138–IV153.

    PubMed  CAS  Google Scholar 

  16. Charlat MI, O’Neill PG, Hartley CJ, Roberts R, Bolli R. Prolonged abnormalities of the left ventricular diastolic wall thinning in the “stunned” myocardium in conscious dogs: time course and relation to systolic function. J Am Coll Cardiol 1989; 13:185–194.

    PubMed  CAS  Google Scholar 

  17. Eisenberg MS, Bergner L, Hallstrom AP. Out-of-hospital cardiac arrest: improved survival with paramedics services. Lancet 1980; 1:812–815.

    Article  PubMed  CAS  Google Scholar 

  18. AHA medical/scientific statement: improving survival from sudden cardiac arrest: the “chain of survival” concept. Circulation 1991; 83:1832–1847.

    Google Scholar 

  19. Lee SK, Vaagenes P, Safar P, Stezoski SW, Scanlon M. Effect of cardiac arrest time on cortical cerebral blood flow during subsequent standard external cardiopulmonary resuscitation in rabbits. Resuscitation 1989; 17:105–117.

    Article  PubMed  CAS  Google Scholar 

  20. Bircher N, Safar P, Stewart R. A comparison of standard, “MAST”-augmented and open chest CPR in dogs. A preliminary investigation. Crit Care Med 1980; 8:147–152.

    PubMed  CAS  Google Scholar 

  21. Safar P. Cerebral resuscitation after cardiac arrest: research initiatives and future direction. Ann Emerg Med 1993; 22:324–349.

    Article  PubMed  CAS  Google Scholar 

  22. Negovsky VA. Postresuscitation disease. Crit Care Med 1988; 16:942–946.

    PubMed  CAS  Google Scholar 

  23. Beckman JS, Minor RL Jr, White CW, Repine JE, Rosen GM, Freeman BA. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem 1988; 263:6884–6892.

    PubMed  CAS  Google Scholar 

  24. Safar P, Stezoski W, Nemoto EM. Amelioration of brain damage after 12 minutes of cardiac arrest in dogs. Arch Neurol 1976; 33:91–95.

    PubMed  CAS  Google Scholar 

  25. Siesjö BK. Mechanisms of ischemic brain damage. Crit Care Med 1988; 16:954–963.

    PubMed  Google Scholar 

  26. Safar P. Effects of the postresuscitation syndrome on cerebral recovery from cardiac arrest. Crit Care Med 1985; 13:932–935.

    PubMed  CAS  Google Scholar 

  27. White BC, Sullivan JM, DeGarcia DJ, et al. Brain ischemia and reperfusion: molecular mechanism of neuronal injury. J Neurol Sci 2000; 179:1–33.

    Article  PubMed  CAS  Google Scholar 

  28. Kumar K, Goosmann M, Krause GS, et al. Ultrastructural and ionic changes in global ischemic dog brain. Acta Neuropathol 1987; 73:393–399.

    Article  PubMed  CAS  Google Scholar 

  29. Sato M, Hashimoto H, Kosaka F. Histological changes of neuronal damage in vegetative dogs induced by 18 minutes of complete global brain ischemia: two-phase damage of Purkinje cells and hippocampal CA1 pyramidal cells. Acta Neuropathol 1990; 80:527–534.

    Article  PubMed  CAS  Google Scholar 

  30. Garcia JH, Lossinsky AS, Kauffman FC, Conger KA. Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol 1978; 43:85–95.

    Article  PubMed  CAS  Google Scholar 

  31. Martin LJ. Neuronal cell death in nervous system development, disease, and injury. Int J Mol Med 2001; 7:455–778.

    PubMed  CAS  Google Scholar 

  32. Pulsinelli W, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982; 11:491–498.

    Article  PubMed  CAS  Google Scholar 

  33. Lind B, Snyder J, Safar P. Total brain ischemia in dogs: cerebral physiologic and metabolic changes after 15 minutes of circulatory arrest. Resuscitation 1975; 4:97–113.

    Article  PubMed  CAS  Google Scholar 

  34. Morimoto Y, Yamamura T, Kemmotsu O. Influence of hypoxic and hypercapnic acidosis on brain water content after forebrain ischemic in the rat. Crit Care Med 1993; 21:907–913.

    PubMed  CAS  Google Scholar 

  35. Chan PH. Role of oxidants in ischemic brain damage. Stroke 1996; 27:1124–1129.

    PubMed  CAS  Google Scholar 

  36. Rosenberg GA. Ischemia brain edema. Prog Cardiovasc Dis 1999; 42:209–216.

    Article  PubMed  CAS  Google Scholar 

  37. Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res 2000; 78:131–137.

    Article  PubMed  CAS  Google Scholar 

  38. Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH. Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 1999; 842:92–100.

    Article  PubMed  CAS  Google Scholar 

  39. Heo JH, Lucero J, Abumiya T, Koziol JA, et al. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 1999; 19:624–633.

    Article  PubMed  CAS  Google Scholar 

  40. Ereci¬Ωska M, Silver IA: ATP and brain function. J Cereb Blood Flow Metab 1989; 9:2–19.

    Google Scholar 

  41. Koehler RC, Backofen JE, McPherson RW, Jones MD Jr, Rogers MC, Traystman RJ. Cerebral blood flow and evoked potentials during Cushing response in sheep. Am J Physiol 1989; 256:H779–H788.

    PubMed  CAS  Google Scholar 

  42. Symon L. Flow thresholds in brain ischemia and the effects of drugs. Br J Anesth 1985; 57:34–43.

    Article  CAS  Google Scholar 

  43. Siesjö BK: Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1981; 1:155–185.

    PubMed  Google Scholar 

  44. Cerchiari EL, Hoel TM, Safar P, Sclabassi RJ. Protective effects of combined superoxide dismutase and deferoxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs. Stroke 1987; 18:869–878.

    PubMed  CAS  Google Scholar 

  45. Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 2001; 32:128–132.

    PubMed  CAS  Google Scholar 

  46. Shaffner DH, Eleff SM, Brambrink AM, et al. Effect of arrest time and cerebral perfusion pressure during cardiopulmonary resuscitation on cerebral blood flow, metabolism, adenosine triphosphate recovery, and pH in dogs. Crit Care Med 1999; 27:1335–1342.

    Article  PubMed  CAS  Google Scholar 

  47. Hossman KA, Ophoff BG. Recovery of monkey brain after prolonged ischemia. I. Electrophysiology and brain electrolytes. J Cereb Blood Flow Metab 1986; 6:15–21.

    Google Scholar 

  48. Opie LH. Effects of regional ischemia on metabolism of glucose and fatty acids. Cir Res 1978; 38(Suppl): 52–74.

    Google Scholar 

  49. Cole SL, Corday E. Four-minute limit for cardiac resuscitation. JAMA 1956; 161:1454–1458.

    CAS  Google Scholar 

  50. Eleff SM, Schleien CL, Koehler RC, et al. Brain bioenergetics during cardiopulmonary resuscitation in dogs. Anesthesiology 1992; 76:77–84.

    Article  PubMed  CAS  Google Scholar 

  51. Kompala SD, Babbs CF, Blaho KE. Effect of deferoxamine on late deaths following CPR in rats. Ann Emerg Med 1986; 15:405–407.

    Article  PubMed  CAS  Google Scholar 

  52. Fleischer JE, Lanier WL, Milde JH, Michenfelder JD. Failure of deferoxamine, an iron chelator, to improve neurological outcome following complete ischemia in dogs. Stroke 1987; 18:124–127.

    PubMed  CAS  Google Scholar 

  53. Schanne FA, Kane AB, Young EE, Farber JL. Calcium dependence of toxic cell death: a final common pathway. Science 1979; 206:700–702.

    Article  PubMed  CAS  Google Scholar 

  54. Rehncrona S, Rosen I, Siesjö BK. Excessive cellular acidosis: an important mechanism of neuronal damage in the brain? Acta Physiol Scand 1980; 110:435–437.

    PubMed  CAS  Google Scholar 

  55. Benveniste H. The excitotoxin hypothesis in relation to cerebral ischemia. Cerebrovasc Brain Metab Rev 1991; 3:213–245.

    PubMed  CAS  Google Scholar 

  56. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987; 37:1281–1286.

    PubMed  CAS  Google Scholar 

  57. Leonov Y, Sterz F, Safar P, Johnson DW, Tisherman SA, Oku K. Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs. Stroke 1992; 23:45–53.

    PubMed  CAS  Google Scholar 

  58. Cohan SL, Mun SK, Petite J, et al. Cerebral blood flow in humans following resuscitation from cardiac arrest. Stroke 1989; 20:761–765.

    PubMed  CAS  Google Scholar 

  59. Todd NV, Picozzi P, Crockard HA, Russell RR. Reperfusion after cerebral ischemia: influence of duration of ischemia. Stroke 1986; 17:460–466.

    PubMed  CAS  Google Scholar 

  60. Nishijima MK, Koehler RC, Hurn PD, et al. Postischemic recovery rate of cerebral ATP, phosphocreatine, pH, and evoked potentials. Am J Physiol 1989; 257:H1860–H1870.

    PubMed  CAS  Google Scholar 

  61. Buchan AM, Li H, Cho S, Pulsinelli WA. Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats. Neurosci Letter 1991; 132:255–258.

    Article  CAS  Google Scholar 

  62. Wolfson SK Jr, Safar P, Reich H, et al. Dynamic heterogenicity of cerebral hypoperfusion after prolonged cardiac arrest in dogs measured by the stable xenon/CT technique: a preliminary study. Resuscitation 1992; 23:1–20.

    Article  PubMed  Google Scholar 

  63. Sterz F, Leonov Y, Safar P, et al. Multifocal Cerbral blood flow Xe-CT and global cerebral metabolism after prolonged cardiac arrest in dogs. Reperfusion with open-chest CPR or cardiopulmonary bypasss. Resuscitation 1992; 24:27–47.

    Article  PubMed  CAS  Google Scholar 

  64. Barone FC, Globus MY, Price WJ, et al. Endothelin levels increase in rat focal and global ischemia. J Cereb Blood Flow Metab 1994; 14:337–342.

    PubMed  CAS  Google Scholar 

  65. Kågström E, Smith ML, Siesjö BK. Cerebral circulatory responses to hypercapnia and hypoxia in the recovery period following complete and incomplete cerebral ischemia in the rat. Acta Physiol Scand 1983; 118:281–291.

    PubMed  Google Scholar 

  66. Obrenovitch TP, Hallenbeck JM. Platelet accumulation in regions of low blood flow during the postischemic period. Stroke 1985; 16:224–234.

    PubMed  CAS  Google Scholar 

  67. Artru AA, Michenfelder JD. Anoxic cerebral potassium accumulation reduced by phenytoin: Mechanism of cerebral protection? Anesth Analg 1981; 60:41.

    PubMed  CAS  Google Scholar 

  68. Hossmann KA, Kleihues P. Reversibility of ischemic brain damage. Arch Neurol 1973; 29:375–384.

    PubMed  CAS  Google Scholar 

  69. Hossmann KA. Treatment of experimental cerebral ischemia. J Cereb Blood Flow Metab 1982; 2: 275–297.

    PubMed  CAS  Google Scholar 

  70. Kleber AG. Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Cir Res 1983; 52:442–450.

    CAS  Google Scholar 

  71. Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia. I. Pathophysiology. J Neurosurgery 1992; 77:169–184.

    Google Scholar 

  72. Wahl P, Schousboe A, Honoré T, Drejer J. Glutamate-induced increase in intracellular Ca2+ in cerebral cortex neurons is transient in immature cells but permanent in mature cells. J Neurochem 1989; 53:1316–1319.

    Article  PubMed  CAS  Google Scholar 

  73. Eisner DA, Lederer WJ. Na-Ca exchange: stoichiometry and electrogenecity. Am J Physiol 1985; 248:C189–C202.

    PubMed  CAS  Google Scholar 

  74. Fagg GE. L-glutamate, excitatory amino acid receptors and brain function. Trends Neuro Sciences 1985; 8:207–210.

    Article  CAS  Google Scholar 

  75. Olson JE, Evers JA. Correlations between energy metabolism, ion transport, and water content in astrocytes. Can J Physiol Pharmacol 1992; 70:S350–S355.

    PubMed  CAS  Google Scholar 

  76. Kleber AG. Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Cir Res 1983; 52:442–450.

    CAS  Google Scholar 

  77. Krause GS, White BC, Aust SD, Nayini NR, Kumar K. Brain cell death following ischemia and reperfusion: a proposed biochemical sequance. Crit Care Med 1988; 16:714–726.

    Article  PubMed  CAS  Google Scholar 

  78. Tosaki A, Hellegouarch A, Braquet P. Cicletanine and reperfusion injury: is there any correlation between arrhythmias, 6-keto-PGF1alpha, thromboxane B2, and myocardial ion shifts (Na+, K+, Ca2+, and Mg2+) induced by ischemia/reperfusion in isolated rat hearts. J Cardiovasc Pharmacol 1991; 17:551–559.

    Article  PubMed  CAS  Google Scholar 

  79. Blaustein MP, Goldman WF, Fontana G, et al. Physiological roles of the sodium-calcium exchanger in nerve and muscle. Ann N Y Acad Sci 1991; 639:254–274.

    Article  PubMed  CAS  Google Scholar 

  80. Benveniste H, Jørgensen MB, Diemer NH, Hansen AJ. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand 1988; 78: 529–536.

    PubMed  CAS  Google Scholar 

  81. Mayer ML, Westbrook GL. Cellular mechanisms underlying excitotoxicity. Trends Neurosci 1987; 10:59–61.

    Article  CAS  Google Scholar 

  82. Chan PH, Kerlan R, Fishman RA. Reductions of gamma-aminobutyric acid and glutamate and (Na++K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J Neurochem 1983; 40:309–315.

    Article  PubMed  CAS  Google Scholar 

  83. Drejer J, Benveniste H, Diemer NH, Schousboe A. Cellular origin of ischemic-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 1985; 45:145–150.

    Article  PubMed  CAS  Google Scholar 

  84. Pin JP, Duvoisin R. Neurotransmitter receptors I: The metabotropic glutamate receptors: Structure and functions. Neuropharmacol 1995; 34:1–26.

    Article  CAS  Google Scholar 

  85. Samoilov MO, Semenov DG, Tulkova EI, Lazarewicz JW. Early postanoxic changes of polyphosphoinositides and bound Ca2+ content in relation to neuronal activity in brain cortex. Resuscitation 1992; 23:33–43.

    Article  PubMed  CAS  Google Scholar 

  86. Yasuda H, Kishiro K, Izumi N, Nakanishi M. Biphasic liberation of arachidonic and stearic acids during cerebral ischemia. J Neurochem 1985; 45:168–172.

    Article  PubMed  CAS  Google Scholar 

  87. Irvine RF. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 1982; 204:3–16.

    PubMed  CAS  Google Scholar 

  88. Umemura A. Regional differences in free fatty acid release and the action of phospholipase during ischemia in rat brain. No To Shinkei 1990; 42:979–986.

    PubMed  CAS  Google Scholar 

  89. McCord JM, Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159–163.

    Article  PubMed  CAS  Google Scholar 

  90. Pourcyrous M, Leffler CW, Bada HS, Korones SB, Busiji DW. Brain superoxide anion generation in asphyxiated piglets and effect of indomethacin at therapeutic dose. Pediatr Res 1993; 34:366–369.

    Article  PubMed  CAS  Google Scholar 

  91. Farber JL. The role of calcium in cell death. Life Sci 1981; 29:1289–1295.

    Article  PubMed  CAS  Google Scholar 

  92. Siesjö BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 1989; 9:127–140.

    PubMed  Google Scholar 

  93. Erecinska M, Silver IA. Relationship between ions and energy metabolism: cerebral calcium movements during ischaemia and subsequent recovery. Can J Physiol Pharmacol 1992; 70:S190–S193.

    PubMed  CAS  Google Scholar 

  94. Boening JA, Kass IS, Cottrell JE, Chambers G. The effect of blocking sodium influx on anoxic damage in the rat hippocampal slice. Neuroscience 1989; 33:263–268.

    Article  PubMed  CAS  Google Scholar 

  95. Berger JR, Busto R, Ginsberg MD. Verapamil: failure of metabolic amelioration following global forebrain ischemia in the rat. Stroke 1984; 15:1029–1032.

    PubMed  CAS  Google Scholar 

  96. Taguchi J, Graf R, Rosner G, Heiss WD. Prolonged transient ischemia results in impaired CBF recovery and secondary glutamate accumulation in cats. J Cereb Blood Flow Metab 1996; 16:271–279.

    Article  PubMed  CAS  Google Scholar 

  97. Cheung JY, Bonventre JV, Malis CD, Leaf A. Calcium and ischemic injury. N Engl J Med 1986; 314: 1670–1676.

    Article  PubMed  CAS  Google Scholar 

  98. Yoshida S, Ikeda M, Busto R, Santiso M, Martinez E, Ginsberg MD. Cerebral phosphoinositide, triacylglycerol, and energy metabolism in reversible ischemia: origin and fate of free fatty acids. J Neurochem 1986; 47:744.

    Article  PubMed  CAS  Google Scholar 

  99. Ernster L. Oxygen as an environmental poison. Chemica Scripta 1986; 26:525–527.

    CAS  Google Scholar 

  100. Bulkley GB. The role of oxygen free radicals in human disease processes. Surgery 1983; 94:407–411.

    PubMed  CAS  Google Scholar 

  101. Krause GS, Nayini NR, White BC, et al. Natural course of iron delocalization and lipid peroxidation following a 15 minute cardiac arrest in dogs. Ann Emerg Med 1987; 16:1200–1205.

    Article  PubMed  CAS  Google Scholar 

  102. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984; 219:1–14.

    PubMed  CAS  Google Scholar 

  103. Okada D. Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis. J Neurochem 1992; 59:1203–1210.

    Article  PubMed  CAS  Google Scholar 

  104. Fridovich I. Superoxide radical: an endogenous toxicant. Ann Rev Pharmacol Toxicol 1983; 23: 239–257.

    Article  CAS  Google Scholar 

  105. White BC, Aust SD, Arfros KE, Aronson LD. Brain injury by ischemic anoxia-hypothesis. A tale of two ions? Ann Emerg Med 1984; 13:862–867.

    Article  PubMed  CAS  Google Scholar 

  106. Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke 1997; 28:1283–1288.

    PubMed  CAS  Google Scholar 

  107. Ambrosio G, Weisfeldt ML, Jacobus WE, Flaherty JT. Evidence for a reversible oxygen radical-mediated component of reperfusion injury: reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation 1987; 75:282–291.

    PubMed  CAS  Google Scholar 

  108. Hall ED, Yonkers PA. Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke 1988; 10:340–344.

    Article  Google Scholar 

  109. Hillered L, Ernster L. Respiratory activity of isolated rat brain mitochondria following in vitro exposure to oxygen radicals. J Cereb Blood Flow Metab 1983; 3:207–214.

    PubMed  CAS  Google Scholar 

  110. Weissmann G, Smolen JE, Korchak HM. Release of inflammatory mediators from stimulated neutrophils. N Engl J Med 1980; 303:27–34.

    Article  PubMed  CAS  Google Scholar 

  111. Au AM, Chan PH, Fishman RA. Stimulation of phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries. J Cell Biochem 1985; 27:449–453.

    Article  PubMed  CAS  Google Scholar 

  112. Zaleska MM, Wilson DF. Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J Neurochem 1989; 52:255–260.

    Article  PubMed  CAS  Google Scholar 

  113. Beckman JS. The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Vevelopmental Physiol 1991; 15:53–59.

    CAS  Google Scholar 

  114. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258:1898–1902.

    Article  PubMed  CAS  Google Scholar 

  115. Bodsch W, Takahashi K, Barbier A, Ophoff B, Hossmann KA. Cerebral protein synthesis and ischemia. Prog Brain Res 1985; 63:197–210.

    PubMed  CAS  Google Scholar 

  116. Nowak TS Jr, Fried RL, Lust D, Passonneau JV. Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. J Neurochem 1985; 44:487–494.

    Article  PubMed  CAS  Google Scholar 

  117. Dienel GA, Pulsinelli WA, Duffy TE. Regional protein synthesis in rat brain following acute hemispheric ischemia. J Neurochem 1980; 35:1216–1226.

    Article  PubMed  CAS  Google Scholar 

  118. Morimoto K, Yanagihara T. Cerebral ischemia in gerbils: polyribosomal function during progression and recovery. Stroke 1981; 12:105–110.

    PubMed  CAS  Google Scholar 

  119. DeGarcia DJ, O’Neil BJ, Frisch C, et al. Studies of the protein synthesis system in the brain cortex during global ischemia and reperfusion. Resuscitation 1993; 21:161–170.

    Article  Google Scholar 

  120. White BC, Grossman LI, Krause GS. Brain injury by global ischemia and reperfusion: a theoretical perspective on membrane damage and repair. Neurology 1993; 43:1656–1665.

    PubMed  CAS  Google Scholar 

  121. de Haro C, Manne V, de Herreros AG, Ochoa S. Heat-stable inhibitor of translation in reticulocyte lysates. Proc Natl Acad Sci USA 1982; 79:3134–3137.

    Article  PubMed  Google Scholar 

  122. Merrick WC: Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 1992; 56: 291–315.

    PubMed  CAS  Google Scholar 

  123. Burda J, Martín ME, García A, Alcázar A, Fando JL, Salinas M. Phosphorylation of the “subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat. Biochem J 1994; 302:335–338.

    PubMed  CAS  Google Scholar 

  124. DeGarcia DJ, Neumar RW, White BC, Krause GS. Global brain ischemia and reperfusion: modifications in eukaryotic initiation factors associated with inhibition of translation initiation. J Neurochem 1996; 67:2005–2012.

    Article  Google Scholar 

  125. Rotman EI, Brostrom MA, Brostrom CO. Inhibition of protein synthesis in intact mammalian cells by arachidonic acid. Biochem J 1992; 282:487–494.

    PubMed  CAS  Google Scholar 

  126. Gaitero F, Limas GG, Mendez E, de Haro C. Purification of a novel heat-stable translational inhibitor from rabbit reticulocyte lysates. FEBS Lett 1988; 236:479–483.

    Article  PubMed  CAS  Google Scholar 

  127. Kleihues P, Hossmann KA, Pegg AE, Kobayashi K, Zimmermann V. Resuscitation of the monkey brain after one hour complete ischemia. III. Indications of metabolic recovery. Brain Res 1975; 95:61–73.

    Article  PubMed  CAS  Google Scholar 

  128. Bodsch W, Barbier A, Oehmichen M, Grosse Ophoff BG, Hossmann KA. Recovery of monkey brain after prolonged ischemia. II. Protein synthesis and morphologic alterations. J Cereb Blood Flow Metab 1986; 6:22–33.

    PubMed  CAS  Google Scholar 

  129. Widmann R, Kuroiwa T, Bonnekoh P, Hossman KA. [14C] Leucine incorporation into brain proteins in gerbils after transient ischemia: relationship to selective vulnerability of hippocampus. J Neurochem 1991; 56:789–796.

    Article  PubMed  CAS  Google Scholar 

  130. Dienel GA, Cruz NF, Rosenfeld SJ. Temporal profiles of proteins responsive to transient ischemia. J Neurochem 1985; 44:600–610.

    Article  PubMed  CAS  Google Scholar 

  131. Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 1990; 347:762–765.

    Article  PubMed  CAS  Google Scholar 

  132. Werther GA, Hogg A, Oldfield BJ, et al. Localization and characterization of insulin receptors in rat brain and pituitary gland in vitro autoradiography and computerized densitometry. Endocrinology 1987; 121:1562–1570.

    PubMed  CAS  Google Scholar 

  133. Wanaka A, Jonhson EM Jr, Milbrandt J. Localization of FGF receptor mRNA in the adult rat central nervous system by in situ hybridization. Neuron 1990; 5:267–281.

    Article  PubMed  CAS  Google Scholar 

  134. Koh S, Oyler GA, Higgins GA. Localization of nerve growth factor receptor messenger RNA and protein in the adult rat brain. Exp Neurol 1989; 106:209–221.

    Article  PubMed  CAS  Google Scholar 

  135. Lauterio TJ. Regulation and physiological function of insulin-like growth factors in the central nervous system. Adv Exp Med Biol 1991; 293:419–430.

    PubMed  CAS  Google Scholar 

  136. Plata-Salaman CR. Epidermal growth factor and the nervous system. Peptides 1991; 12:653–663.

    Article  PubMed  CAS  Google Scholar 

  137. DeGarcia DJ, O’Neil BJ, White BC, et al. Insulin induces tyrosine phosphorylation of a 90-kDa protein during postischemic brain reperfusion. Exp Neurol 1993; 124:351–356.

    Article  Google Scholar 

  138. Jørgensen MB, Deckert J, Wright DC, Gehlert DR. Delayed c-fos proto-oncogene expression in the rat brain following transient forebrain ischemia. Brain Res 1989; 484:393–398.

    Article  PubMed  Google Scholar 

  139. Schiaffonati L, Rappocciolo E, Tacchini L, Cairo G, Bernelli-Zazzera A. Reprogramming of gene expression in post-ischemic rat liver: Induction of protooncogenes and hsp-70 gene family. J Cell Physiol 1990; 143:79–87.

    Article  PubMed  CAS  Google Scholar 

  140. Beckmann RP, Mizzen LE, Welch WJ. Interaction of HSP-70 with newly synthesized proteins: implications for protein folding and assembly. Science 1990; 248:850–854.

    Article  PubMed  CAS  Google Scholar 

  141. Nowak TS Jr. Synthesis of a stress protein following transient ischemia in the gerbil. J Neurochem 1985; 45:1635–1641.

    Article  PubMed  CAS  Google Scholar 

  142. Kanduc D, Mittleman A, Serpico R, et al. Cell death: apoptosis versus necrosis. Int J Oncol 2002; 21: 165–170.

    PubMed  CAS  Google Scholar 

  143. Davis JN, Antonawich FJ. Role of apoptotic proteins in ischemic hippocampal damage. Ann N Y Acad Sci 1997; 835:309–320.

    Article  PubMed  CAS  Google Scholar 

  144. Bredesen DE. Keeping neurons alive: the molecular control of apoptosis. Neuroscientist 1996; 2: 211–216.

    Article  CAS  Google Scholar 

  145. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000; 407:802–809.

    Article  PubMed  CAS  Google Scholar 

  146. Nitatori T, Sato N, Waguri S, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 1995; 15:1001–1011.

    PubMed  CAS  Google Scholar 

  147. Vexler ZS, Roberts TP, Bollen AW, Derugin N, Arieff AI. Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion. J Clin Invest 1997; 99:1453–1459.

    PubMed  CAS  Google Scholar 

  148. Wyllie AH, Beattie GJ, Hargreaves AD. Chromatin changes in apoptosis. Histochem J 1981; 13: 681–692.

    Article  PubMed  CAS  Google Scholar 

  149. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284:555,556.

    Article  PubMed  CAS  Google Scholar 

  150. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407:770–776.

    Article  PubMed  CAS  Google Scholar 

  151. MacManus JP, Buchan AM, Hill IE, Rasquinha I, Prrston E. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett 1993; 164:89–92.

    Article  PubMed  CAS  Google Scholar 

  152. Schutz JB, Weller M, Moskowitz MA. Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 1999; 45:421–429.

    Article  Google Scholar 

  153. Bredesen DE. Neuronal apoptosis. Ann Neurol 1995; 38:839–851.

    Article  PubMed  CAS  Google Scholar 

  154. Miuai M, Zhu H, Rotello R, Hartwieg EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolg of the C. elegans cell death gene ced-3. Cell 1993; 75: 653–660.

    Article  Google Scholar 

  155. Chen J, Nagayama T, Jin K, et al. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998; 18:4914–4928.

    PubMed  CAS  Google Scholar 

  156. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000; 69:217–245.

    Article  PubMed  CAS  Google Scholar 

  157. Hu WH, Johnson H, Shu HB. Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-κB and JNK activation and apoptosis through distinct pathways. J Biol Chem 1999; 274: 30,603–30,610.

    Article  PubMed  CAS  Google Scholar 

  158. Ahmad M, Srinivasula SM, Wang L, et al. CRADD, a novel human apoptotic adaptor molecule for caspase-2 and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res 1997; 57: 615–619.

    PubMed  CAS  Google Scholar 

  159. Antonsson B: Bax and other pro-apoptotic Bcl-2 family “killer-proteins” and their victim the mitochondrion. Cell Tissue Res 2001; 306:347–361.

    Article  PubMed  CAS  Google Scholar 

  160. Chopp M, Li Y. Apoptosis in focal cerebral ischemia. Acta Neurochir Suppl 1996; 66:21–26.

    PubMed  CAS  Google Scholar 

  161. Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of interleukin 1 beta converting enxyme family proteaes reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 1997; 94:2007–2012.

    Article  PubMed  CAS  Google Scholar 

  162. Satoh MS, Lindahl T. Role of poly (ADP-ribose) formation in DNA repair. Nature 1992; 356:356–358.

    Article  PubMed  CAS  Google Scholar 

  163. Lindahl T, Satoh MS, Poirier GG, Klungland. Post-translational modification of ploy(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 1995; 20:405–411.

    Article  PubMed  CAS  Google Scholar 

  164. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Dang CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376:37–43.

    Article  PubMed  CAS  Google Scholar 

  165. Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. FASEB 1996; 10:587–597.

    CAS  Google Scholar 

  166. Eliasson MJL, Sampei K, Mandir AS, et al. Poly (ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 1997; 3:1089–1095.

    Article  PubMed  CAS  Google Scholar 

  167. Cole KK, Perez-Polo JR. Poly (ADP-ribose) polymerase inhibition prevents both apoptotic-like delayed neuronal death and necrosis after H202 injury. J Neurochem 2002; 82; 19–29.

    Article  PubMed  CAS  Google Scholar 

  168. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwanatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391:43–50, Erratum in: Nature 1998; 28:393–396.

    Article  PubMed  CAS  Google Scholar 

  169. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 2000; 476: 118–123.

    Article  PubMed  CAS  Google Scholar 

  170. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001; 412:95–99.

    Article  PubMed  CAS  Google Scholar 

  171. Cao G, Pei W, Lan J, et al. Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J Neurosci 2001; 21: 4678–4690.

    PubMed  CAS  Google Scholar 

  172. Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol 1990; 34: 401–427.

    Article  PubMed  CAS  Google Scholar 

  173. Eleff SM, Schleien CL, Koehler RC, et al. Brain bioenergetics during cardiopulmonary resuscitation in dogs. Anesthesiology 1992; 76:77–84. Erratum in anesthesiology 1992; 76:666.

    Article  PubMed  CAS  Google Scholar 

  174. Johnson BA, Weil MH. Redefining ischemia due to circulatory failure as dual defects of oxygen deficit and of carbon dioxide excesses. Crit Care Med 1991; 19:1432–1438.

    PubMed  CAS  Google Scholar 

  175. Duggal C, Weil MH, Gazmuri RJ, et al. Regional blood flow during closed-chest cardiac resuscitation in rats. J Appl Physiol 1993; 74:147–152.

    PubMed  CAS  Google Scholar 

  176. von Planta M, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 1989; 80:684–692.

    Google Scholar 

  177. Sanders AB, Kern KB, Atlas M, Bragg S, Ewy GA. Importance of the duration of inadequate coronary perfusion pressure on resuscitation from cardiac arrest. J Am Coll Cardiol 1985; 6:113–118.

    PubMed  CAS  Google Scholar 

  178. Hurn PD, Koehler RC, Norris SE, Blizard KK, Traystman RJ. Dependence of cerebral energy phosphate and evoked potential recovery on end-ischemic pH. Am J Physiol 1991; 260:H532–H541.

    PubMed  CAS  Google Scholar 

  179. Maruki Y, Koehler RC, Eleff SM, Traystman RJ. Intracellular pH during reperfusion influences evoked potential recovery after complete cerebral ischemia. Stroke 1993; 24:697–704.

    PubMed  CAS  Google Scholar 

  180. Martin GB, Nowak RM, Paradis N, et al. Characterization of cerebral energetics and brain pH by 31P spectroscopy after graded canine cardiac arrest and bypass reperfusion. J Cereb Blood Flow Metab 1990; 10:221–226.

    PubMed  CAS  Google Scholar 

  181. Welsh FA, Ginsberg MD, Rieder W, Budd WW. Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. II. Regional metabolic levels. Stroke 1980; 11:355–363.

    PubMed  CAS  Google Scholar 

  182. Pulsinelli WA, Waldman S, Rawlinson D, Plum F. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 1982; 32:1239–1246.

    PubMed  CAS  Google Scholar 

  183. Warner DS, Gionet TX, Todd MM, McAllister AM. Insulin-induced normoglycemia improves ischemic outcome in hyperglycemic rats. Stroke 1992; 23:1775–1781.

    PubMed  CAS  Google Scholar 

  184. Tyson R, Peeling J, Sutherland G. Metabolic changes associated with altering blood glucose levels in short duration forebrain ischemia. Brain Res 1993; 608:288–298.

    Article  PubMed  CAS  Google Scholar 

  185. O’Donnell BR, Bickler PE. Influence of pH on calcium influx during hypoxia in rat cortical brain slices. Stroke 1994; 25:171–177.

    PubMed  CAS  Google Scholar 

  186. Rehncrona S, Hauge HN, Siesjö BK. Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: difference in effect by lactic acid and CO2. J Cereb Blood Flow Metab 1989; 9:65–70.

    PubMed  CAS  Google Scholar 

  187. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59:1609–1623.

    Article  PubMed  CAS  Google Scholar 

  188. Siesjö BK, Bendek G, Koide T, Westerberg E, Weiloch T. Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cereb Blood Flow Metab 1985; 5:253–258.

    PubMed  Google Scholar 

  189. Hossmann KA, Hossmann V. Coagulopathy following experimental cerebral ischemia. Stroke 1977; 8:249–253.

    PubMed  CAS  Google Scholar 

  190. Hekmatpanah J. Cerebral blood flow dynamics in hypotension and cardiac arrest. Neurology 1973; 23:174–180.

    PubMed  CAS  Google Scholar 

  191. Böttiger BW, Martin E. Thrombolytic therapy during cardiopulmonary resuscitation and the role of coagulation activation after cardiac arrest. Curr Opin Crit Care 2001; 7:176–183.

    Article  PubMed  Google Scholar 

  192. Böttiger BW, Motsch J, Böhrer H, et al. Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis. Circulation 1995; 92:2573–2578.

    Google Scholar 

  193. Fischer M, Hossmann K. No-reflow after cardiac arrest. Intensive Care Med 1995; 21:132–141.

    Article  PubMed  CAS  Google Scholar 

  194. Lin SR, O’Connor MJ, Fischer HW, King A. The effect of combined dextran and streptokinase on cerebral function and blood flow after cardiac arrest: an experimental study on the dog Invest Radiol 1978; 13:490–498.

    Article  PubMed  CAS  Google Scholar 

  195. Love S, Barber R. Expression of P-seletin and intracellular adhesion molecule-1 in human brain after focal infarction or cardiac arrest. Neuropathol Appl Neurobiol 2001; 27:465–473.

    Article  PubMed  CAS  Google Scholar 

  196. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 2003; 62:127–136.

    PubMed  CAS  Google Scholar 

  197. Schott RJ, Natale JE, Ressler SW, Burney RE, D’Alect LG. Neutrophil depletion fails to improve neurological outcome after cardiac arrest in dogs. Ann Emerg Med 1989; 18:517–522.

    Article  PubMed  CAS  Google Scholar 

  198. Buchan AM, Bruederlin B, Heinicke E, Li H. Failure of the lipid peroxidation inhibitor, U7400GF, to prevent postischemic selective neuronal injury J Cereb Blood Flow Metab 1992; 12:250–256.

    PubMed  CAS  Google Scholar 

  199. Hallenbeck JM, Dutka AJ, Tanishimi T, et al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 1986; 17:246–253.

    PubMed  CAS  Google Scholar 

  200. Dutka AJ, Kochanek P, Francis TJ, Hallenbeck JM. Leukopenia ameliorates multifocal brain ischemia. Neurology [Abstract] 1987; 37(Suppl):249.

    Google Scholar 

  201. Bednar M, Smith B, Pinto A, Mullane KM. Nafazatrom-induced salvage of ischemic myocardium in anesthetized dogs is mediated through inhibition of neutrophil function. Cir Res 1985; 57:131–141.

    CAS  Google Scholar 

  202. Crawford MH, Grover FL, Kolb WP, et al. Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury. Circulation 1988; 78:1449–1458.

    PubMed  CAS  Google Scholar 

  203. Kirschfink M: Controlling the complement system in inflammation. Immunopharmacol 1997; 38: 51–62.

    Article  CAS  Google Scholar 

  204. Foreman KE, Vaporciyan AA, Borish BK, et al. C5a-induced expression of P-selectin in endothelial cells. J Clin Invest 1994; 94:1147–1155.

    Article  PubMed  CAS  Google Scholar 

  205. Butcher EC. Leukocyte-endothelial cell adhesion recognition: Three (or more) steps to specificity and diversity. Cell 1991; 67:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  206. Czurko A, Nishino H. Appearance of immunoglobulin G and complement factor C3 in the striatum after transient focal ischemia in the rat. Neurosci Lett 1994; 166:51–54.

    Article  PubMed  CAS  Google Scholar 

  207. Nathan C, Sporn M. Cytokines in context. J Cell Biol 1991; 113:981–986.

    Article  PubMed  CAS  Google Scholar 

  208. Kishimoto TK. A dynamic model for neutrophil localization to inflammatory sites. J NIH Res 1991; 3:75–77.

    Google Scholar 

  209. McEver RP. Selectins: novel adhesion receptors that mediate leukocyte adhesion during inflammation. Thromb Haematol 1991; 65:223–229.

    CAS  Google Scholar 

  210. Tilton RG, Berens KL. Functional role for selectins in the pathogenesis of cerebral ischemia. Drugs News Perspect 2002; 15:351–357.

    Article  CAS  Google Scholar 

  211. Bevilacqua MP, Nelson RM. Selectins J Clin Invest 1993; 91:379–387.

    PubMed  CAS  Google Scholar 

  212. Ghezzi P, Dinarello CA, Bianchi M, Rosandich ME, Repine JE, White CW. Hypoxia increases production of interleukin-1 and tumor-necrosis-factor by mononuclear cells. Cytokine 1991; 3:189–194.

    Article  PubMed  CAS  Google Scholar 

  213. Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol 1991; 112:749–759.

    Article  PubMed  CAS  Google Scholar 

  214. Clark WM, Lauten JD, Lessov N, Woodward W, Coull BM. Time course of ICAM-1 expression and leukocyte subset infiltration in rat forebrain ischemia. Mol Chem Neuropathol 1995; 26:213–230.

    PubMed  CAS  Google Scholar 

  215. Springer T. Adhesion receptors of the immune system. Nature 1990; 346:425–434.

    Article  PubMed  CAS  Google Scholar 

  216. Howard EF, Chen Q, Cheng C, Caroll JE, Hess D. NF-Œ∫B and ICAM-1 gene expression is upregulated during reoxygentaion of human brain endothelial cells. Neurosci Lett 1998; 248:199–203.

    Article  PubMed  CAS  Google Scholar 

  217. Lindsberg PJ, Yue TL, Frerichs KU, Hallenbeck JM, Feuerstein G. Evidence for platelet-activating factor as anovel mediator in expiremental stroke in rabbits. Stroke 1990; 21:1452–1457.

    PubMed  CAS  Google Scholar 

  218. Kubes P, Ibbotson G, Russell J, Wallace JL, Granger DN. Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol 1990; 259; G300–G305.

    PubMed  CAS  Google Scholar 

  219. Susuki M, Asako H, Kubes P, Jennings S, Grisham MB, Granger DN. Neutrophil-derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res 1991; 42:125–138.

    Article  Google Scholar 

  220. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320:365–376.

    Article  PubMed  CAS  Google Scholar 

  221. Ma XL, Lefer DJ, Lefer AM, Rothelein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation 1992; 86:937–946.

    PubMed  CAS  Google Scholar 

  222. Dreyer WJ, Michael LH, West MS, DC, Entman ML. Neutrophil accumulation in ischemic myocardium: insights into time course, distribution, and mechanism of localization during early reperfusion. Circulation 1991; 84:400,411.

    PubMed  CAS  Google Scholar 

  223. Lees GJ. The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci 1993; 114:119–122.

    Article  PubMed  CAS  Google Scholar 

  224. Wei G, Dawson VL, Zweier JL. Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. Biochim Biophys Acta 1999; 1455:23,34.

    PubMed  CAS  Google Scholar 

  225. De Belder AJ, Radomski MW, Why HJ, et al. Nitric oxide synthase activities in human myocardium. Lancet 1993; 341:84,85.

    Article  PubMed  Google Scholar 

  226. Nozaki K, Moskowitz MA, Maynard KI, et al. Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 1993; 13:70–79.

    PubMed  CAS  Google Scholar 

  227. Bredt DS, Snyder SH. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Natl Acad Sci, USA 1990; 87:682–685.

    Article  PubMed  CAS  Google Scholar 

  228. Fukuyama N, Takizawa S, Ishida H, Hoshiai K, Shinohara Y, Nakazawa H. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J Cereb Blood Flow Metab 1996; 18:123–129.

    Google Scholar 

  229. Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1999; 1411:415–436.

    Article  PubMed  CAS  Google Scholar 

  230. Ungureanu-Longrois D, Balligand JL, Simmons WW, et al. Induction of nitric oxide synthase activity by cytokines in ventricular myocytes is necessary but not sufficient to decrease contractile responsiveness to $-adrenergic agonists. Circ Res 1995; 77:494–502.

    PubMed  CAS  Google Scholar 

  231. Park SY, Lee H, Hur J, et al. Hypoxia induces nitric oxide production in mouse microglia via p38 mitogen-activated protein kinase pathway. Brain Res Mol Brain Res 2002; 107:9–16.

    Article  PubMed  CAS  Google Scholar 

  232. Tominaga T, Stao S, Ohnishi T, Ohnishi ST. Electron paramagnetic resonance (EPR) detection of nitric oxide produced during focal ischemia in the rat. J Cereb Blood Flow Metab 1994; 14:715–722.

    PubMed  CAS  Google Scholar 

  233. Southam E, East SJ, Garthwaite J. Excitatory amino acid receptors coupled to the nitric oxide/cyclic GMP pathway in rat cerebrellum during development. J Neurochem 1991; 56:2072–2081.

    Article  PubMed  CAS  Google Scholar 

  234. Garthwaite J, Garthwaite G, Palmer RMJ, Moncada S. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 1989; 172:413–416.

    Article  PubMed  CAS  Google Scholar 

  235. Kilbourn RG, Traber DL, Szabo C. Nitric oxide and shock. Dis Mon 1997; 43:277–348.

    PubMed  CAS  Google Scholar 

  236. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. J Biol Chem 1991; 266:4244–4250.

    PubMed  CAS  Google Scholar 

  237. Mullie A, Verstringe P, Buylaert W, et al. Predictive value of Glascow coma score for awakening after out-of-hospital cardiac arrest. Cerebral resuscitation study group of the Belgian Society for Intensive care. Lancet 1988; 1:137–140.

    PubMed  CAS  Google Scholar 

  238. Grubb NR, Elton RA, Fox KA. In-hospital mortality after out-of-hospital cardiac arrest. Lancet 1995; 346:417–421.

    Article  PubMed  CAS  Google Scholar 

  239. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet 1974; 2:81–84.

    Article  PubMed  CAS  Google Scholar 

  240. Kelsey SF, Abramson NS, Detre KM, Monroe J. Brain Resuscitation Clinical Trail I Study Group. A randomized clinical study of cardiopulmonary-cerebral resuscitation: design, methods, and patient characteristics. Am J Emerg Med 1986; 4:72–86.

    Article  Google Scholar 

  241. Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F: Predicting outcome from hypoxic-ischemic coma. JAMA 1985; 253:1420–1426.

    Article  PubMed  CAS  Google Scholar 

  242. Berek K, Jeschow M, Aichner F. The prognostication of cerebral hypoxia after out-of-hospital cardiac arrest in adults. Eur Neurol 1997; 37:135–145.

    PubMed  CAS  Google Scholar 

  243. Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrrell K, Safar R. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet 1994; 343:1055–1059.

    Article  PubMed  CAS  Google Scholar 

  244. Fiser DH, Long N, Roberson PK, Hefley G, Zolten K, Brodie-Fowler M. Relationship of pediatric overall performance category and pediatric cerebral performance category scores at pediatric intensive care unit discharge with outcome measures collected at hospital discharge and 1-and 6-month follow-up assessments. Crit Care Med 2000; 28:2616–2620.

    Article  PubMed  CAS  Google Scholar 

  245. Synek VM. Value of a revised EEG coma scale for prognosis after cerebral anoxia and diffuse head injury. Clin Electroencephalogr 1990; 21:25–30.

    PubMed  CAS  Google Scholar 

  246. Yamashita S, Morinaga T, Ohgo S, Sakamoto T, Kaku N, Sugimoto S, Matsukura S. Prognostic value of electroencephalogram (EEG) in anoxic encephalopathy after cardiopulmonary resuscitation: relationship among anoxic period, EEG grading and outcome. Intern Med 1995; 34:71–76.

    PubMed  CAS  Google Scholar 

  247. Geocadin RG, Sherman DL, Christian Hansen H, et al. Neurological recovery by EEG bursting after resuscitation from cardiac arrest in rats. Resuscitation 2002; 55:193–200.

    Article  PubMed  Google Scholar 

  248. Jørgensen E, Malchow-Moller A. Natural history of global and critical brain ischemia. Part I: EEG and neurological signs during the first year after cardiopulmonary resuscitation in patients subsequently regaining consciousness. Resuscitation 1981; 9:133–153.

    Article  PubMed  Google Scholar 

  249. Wijdicks EF, Parisi JE, Sharborough FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol 1994; 35:239–243.

    Article  PubMed  CAS  Google Scholar 

  250. Rothstein TL, Thomas EM, Sumi SM. Predicting outcome in hypoxic-ischemic coma. A prospective clinical and electrophysiological study. Electroencephalogr Clin Neurophysiol 1991; 79:101–107.

    Article  PubMed  CAS  Google Scholar 

  251. Kjos BO, Brant-Zawadzki M, Young RG. Early CT findings of global central nervous system hypoperfusion. Am J Roentgenol 1983; 141:1227–1232.

    CAS  Google Scholar 

  252. Roine RO, Raininko R, Erkinjuntti T, Ylikoski A, Kaste M. Magnetic resonance imaging findings associated with cardiac arrest. Stroke 1993; 24:1005–1014.

    PubMed  CAS  Google Scholar 

  253. Cohan SL, Mun SK, Petitie J, Correia J, Tavelra Da Silva AT, Waldhom RE. Cerebral blood flow in humans following resuscitation from cardiac arrest. Stroke 1989; 20:761–765.

    PubMed  CAS  Google Scholar 

  254. Roine RO, Launes J, Nikkinen P, Lindroth L, Kaste M. Regional cerebral blood flow after human cardiac arrest. A hexamethylpropyleneamine oxime single photon emission computed tomographic study. Arch Neurol 1991; 48:625–629.

    PubMed  CAS  Google Scholar 

  255. Barone FC, Clark RK, Price WJ, White RF, Feuerstein GZ, Barone FC. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischaemia. Brain Res 1993; 623: 77–82.

    Article  PubMed  CAS  Google Scholar 

  256. Hachimi-Idrissi S, Van der Auwera M, Schiettecatte J, Ebinger G, Michotte Y, Hughens L. S-100 protein as early predictor of regaining consciousness after out of hospital arrest. Resuscitation 2002; 53:251–257.

    Article  PubMed  CAS  Google Scholar 

  257. Karkela J, Bock E, Kaukinen S. CSF and serum brain-specific creatine kinase isoenzyme (CK-BB), neuron-specific enolase (NSE) and neural cell adhesion molecule (NCAM) as prognostic markers for hypoxic brain injury after cardiac arrest in man. J Neurol Sci 1993; 116:100–109.

    PubMed  CAS  Google Scholar 

  258. Abramson NA, Safar P, Detre KM, Kelsey SF, Monroe J, Reinmuth O, Snyder JV: Neurological recovery after cardiac arrest: effect of duration of ischemia. Crit Care Med 1985; 13:930–931.

    Article  PubMed  CAS  Google Scholar 

  259. Safar P. Resuscitation from clinical death: pathophysiologic limits and therapeutic potentials. Crit Care Med 1988; 16:923–941.

    PubMed  CAS  Google Scholar 

  260. Selman WR, Spetzler RF, Roski RA. Barbiturate resuscitation from focal cerebral ischemia-A review. Resuscitation 1981; 9:189–196.

    Article  PubMed  CAS  Google Scholar 

  261. Nordstrom CH, Rehncrona S, Siesjo BK. Restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after 30 minutes of complete ischemia in rats anesthetized with nitrous oxide or pentobarbital. J Neurochem 1978; 30:479–486.

    Article  PubMed  CAS  Google Scholar 

  262. Todd MM, Chadwick HS, Shapiro HM, Dunlop BJ, Marshall LF, Dueck R. The neurological effects of thiopental therapy following experimental cardiac arrest in cats. Anesthesiology 1982; 57:76–86.

    Article  PubMed  CAS  Google Scholar 

  263. Safar P. Amelioration of postischemic brain damage with barbiturates. Stroke 1980; 11:34–38.

    Google Scholar 

  264. Smith AL, Hoff JT, Nielson SL, Larson CP. Barbiturate protection against cerebral infarction. Stroke 1974; 5:1–7.

    PubMed  CAS  Google Scholar 

  265. Nussmeier NA, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology 1986; 64:165–170.

    PubMed  CAS  Google Scholar 

  266. Ward JD, Becker DP, Miller DJ, et al. Failure of prophylactic barbiturate coma in the treatment of severe head trauma. J Neurosurg 1985; 62:383.

    PubMed  CAS  Google Scholar 

  267. Bleyaert AL, Nemoto EM, Safar P, et al. Thiopental amelioration of brain damage after global ischemia in monkeys. Anesthesiology 1978; 49:390–398.

    Article  PubMed  CAS  Google Scholar 

  268. Snyder BD, Ramirez-Lessepas M, Sukhum P, Fryd D, Sung JH. Failure of thiopental to moderate global anoxic injury. Stroke 1979; 10:135.

    PubMed  CAS  Google Scholar 

  269. Rogers MC, Kirsch JR. Current concepts in brain resuscitation. JAMA 261:3143–3147.

    Google Scholar 

  270. Safar P. Brain resuscitation. Special symposium issue. Critical care Med 1978; 6:199–214.

    CAS  Google Scholar 

  271. Ebmeyer U, Safar P, Radovsky A, et al. Thiopental combination treatments for cerebral resuscitation after prolonged cardiac arrest in dogs. Exploratory outcome study. Resuscitation 2000; 45:119–131.

    Article  PubMed  CAS  Google Scholar 

  272. Vaagenes P, Cantadore R, Safar P, et al. Amelioration of brain damage by lidoflazine after prolonged ventricular fibrillation cardiac arrest in dogs. Crit Care Med 1984; 12:846–855.

    Article  PubMed  CAS  Google Scholar 

  273. White BC, Winegar CD, Wilson RF, Hoehner PJ, Trombley JH Jr. Possible role of calcium blockers in cerebral resuscitation: A review of the literature and synthesis for future studies. Crit Care Med 1983; 11:202–207.

    Article  PubMed  CAS  Google Scholar 

  274. White BC, Gadzinski DS, Hoehner PJ, et al. Effect of flunarizine on canine cerebral cortical blood flow and vascular resistance post cardiac arrest. Ann Emerg Med 1982; 11:119–126.

    Article  PubMed  CAS  Google Scholar 

  275. Mohamed AA, Mendelow AD, Teasdale GM, Teasdale GM, Harper Am, McCulloch J. Effect of the calcium antagonist nimodipine on local cerebral blood flow and metabolic coupling. J Cereb Blood Flow Metab 1985; 5:26–33.

    PubMed  CAS  Google Scholar 

  276. Steen PA, Gisvold SE, Milde JH, et al. Nimodipine improves outcome when given after complete cerebral ischemia in primates. Anesthesiology 1985; 62:406–414.

    Article  PubMed  CAS  Google Scholar 

  277. Fleischer JE, Lanier WL, Milde JH, Michenfelder JD. Lidoflazine does not improve neurological outcome when administered after complete cerebral ischemia in dogs. Anesthesiology 1987; 66: 304–311.

    Article  PubMed  CAS  Google Scholar 

  278. Calle PA, Paridaens K, De Ridder LI, Buylaert WA. Failure of nimodipine to prevent brain damage in a global brain ischemia model in the rat. Resuscitation 1993; 25:59–71.

    Article  PubMed  CAS  Google Scholar 

  279. Lanza RP, Cooper DK, Barnard CN. Lack of efficacy of high-dose verapamil in preventing brain damage in baboons and pigs after prolonged partial cerebral ischemia. Am J Emerg Med 1984; 2:481–485.

    Article  PubMed  CAS  Google Scholar 

  280. White BC, Winegar CD, Wilson RF, Krause GS. Calcium blockers in cerebral resuscitation. J Trauma 1983; 23:788–794.

    PubMed  CAS  Google Scholar 

  281. Kelsey SF, Sutton-Tyrrell K, Abramson S, et al. A randomized clinical trial of calcium entry blocker administration to comatose survivors of cardiac arrest. Design, methods, and patient characteristics. Brain resuscitation Clinical Trial II Study Group. Control Clin trials 1991; 12:525–545.

    Article  Google Scholar 

  282. Safar P. Cerebral resuscitation after cardiac arrest: research initiatives and future directions. Ann Emerg Med 1993; 2:324–349.

    Article  Google Scholar 

  283. Abramson NS, Kelsey SF, Safar P, Sutton-Tyrell K. Simpson’s paradox and clinical trials: what you find is not necessarily what you prove. Ann Emerg Med 1992; 21:1480–1482.

    Article  PubMed  CAS  Google Scholar 

  284. Roine RO, Kaste M, Kinnunen A, Nikki P, Sarna S, Kajaste S. Nimodipine after resuscitation from out-of-hospital ventricular fibrillation. A placebo-controlled, double-blind randomized trial. JAMA 1990; 264:3171–3177.

    Article  PubMed  CAS  Google Scholar 

  285. Fleischer JE, Tateishi A, Drummond JC, et al. MK-801, an excitatory amino acid antagonist, does not improve neurological outcome following cardiac arrest in cats. J Cereb Blood Flow Metab 1989; 9:795–804.

    PubMed  CAS  Google Scholar 

  286. Schwarcz R, Meldrum B. Excitatory aminoacid antagonists provide a therapeutic approach to neurological disorders. Lancet 1985; 2:140–143.

    Article  PubMed  CAS  Google Scholar 

  287. Muir KW, Grosset DG, Lees KR. Effects of prolonged infusions of the NMDA antagonist aptiganel hydrochloride (CNS 1102) in normal volunteers. Clin Neuropharmacol 1997; 20:311–321.

    PubMed  CAS  Google Scholar 

  288. Gill R, Foster AC, Woodruff GN: Systemic administration of MK-801 protects against ischaemia-induced hippocampal neuroregeneration in the gerbil. J Neurosci 1987; 7:3343–3349.

    PubMed  CAS  Google Scholar 

  289. Gerlach R, Beck M, Zeitschel U, Seifert V: MK 801 attenuates c-Fos and c-Jun expression after in vitro ischemia in rat neuronal cell cultures but not in PC 12 cells. Neurol Res 2002; 24:725–729.

    Article  PubMed  CAS  Google Scholar 

  290. Gill R, Foster A, Woodruff GN. MK-801 is neuroprotective in gerbils when administered during the post-ischemic period. Neurosci 1988; 25:847–855.

    Article  CAS  Google Scholar 

  291. Lanier WL, Perkins WJ, Karlsson BR, et al. The effects of dizocilpine melaete (MK-801) an antagonist of the N-methyl-D-aspartate receptor, on neurological recovery and histopathology following complete cerebral ischemia in primates. J Cereb Blood Flow Metab 1990; 10:252–261.

    PubMed  CAS  Google Scholar 

  292. Sterz F, Leonov Y, Safar P, et al. Effect of excitatory amino acid receptor blocker MK-801 on overall and neurological outcome after prolonged cardiac arrest in dogs. Anesthesiology 1989; 71:907–918.

    Article  PubMed  CAS  Google Scholar 

  293. Helfaer MA, Ichord RN, Martin LJ, Hurn PD, Castro A, Traystman RJ. Treatment with the competitive NMDA antagonist GPI 3000 does not improve outcome after cardiac arrest in dogs. Stroke 1998; 29: 824–829.

    PubMed  CAS  Google Scholar 

  294. Nellgård B, Wieloch T. Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab 1992; 12:2–11.

    PubMed  Google Scholar 

  295. Menniti FS, Buchan AM, Chenard BL, et al. CP-465,022, a selective noncompetitive AMPA receptor antagonist, blocks AMPA receptors but is not neuroprotective in vivo. Stroke 2003; 34:171–176.

    Article  PubMed  CAS  Google Scholar 

  296. Cerchiari EL, Hoel TM, Safar P, Sclabassi RJ. Protective effects of combined superoxide dismutase and deferoxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs. Stroke 1987; 18:869–878.

    PubMed  CAS  Google Scholar 

  297. Vaagenes P, Safar P, Cantadore R, et al. Outcome trails of free radical scavengers and calcium entry blockers after cardiac arrest in two dog models [abstract]. Ann Emerg Med 1986; 15:665.

    Google Scholar 

  298. Natale JE, Schott RJ, Hall ED, Braughler JM. The 21-aminosteroid U74006F reduces systemic lipid peroxidation, improves neurological function, and reduces mortality after cardiopulmonary arrest in dogs. Prog Clin Biol Res 1989; 308:891–896.

    PubMed  CAS  Google Scholar 

  299. Hall ED. Lipid antioxidants in acute central nervous system injury. Ann Emerg Med 1993; 22:1022–1027.

    Article  PubMed  CAS  Google Scholar 

  300. Perkins WJ, Milde LN, Milde JH, Michenfelder JD. Pretreatment with U74006F improves neurological outcome following complete cerebral ischaemia in dogs. Stroke 1991; 22:902–909.

    PubMed  CAS  Google Scholar 

  301. Beck T, Bielenberg GW. Failure of the lipid peroxidation inhibitor U74006F to improve neurological outcome after transient forebrain ischemia in the rat. Brain Res 1990; 532:336–338.

    Article  PubMed  CAS  Google Scholar 

  302. Sterz F, Safar P, Johnson DW, Oku K, Tisherman SA. Effects of U74006F on multifocal cerebral blood flow and metabolism after cardiac arrest in dogs. Stroke 1991; 22:889–895.

    PubMed  CAS  Google Scholar 

  303. Feng Y, LeBlanc MH, LeBlanc EB, et al. Desmethyl tirilazad improves neurological function after hypoxic ischemic brain injury in piglets. Crit Care Med 2000; 28:1431–1438.

    Article  PubMed  CAS  Google Scholar 

  304. Meyer FB, Sundt TM, Yanagihara T, Anderson RE. Focal cerebral ischemia: pathophysiologic mechanisms and rationale for future avenues of treatment. Mayo Clin Proc 1987; 62:35–55.

    PubMed  CAS  Google Scholar 

  305. Palmer C, Roberts RL, Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 1994; 25:1039–1045.

    PubMed  CAS  Google Scholar 

  306. Rosenthal RE, Chanderbhan R, Marshall G, Fiskum G. Prevention of post-ischemic brain lipid conjugated diene production and neurological injury by hydroxyethyl starch-conjugated deferoxamine. Free Radic Biol Med 1992; 12:29–33.

    Article  PubMed  CAS  Google Scholar 

  307. Liachenko S, Tang P, Xu Y. Deferoxamine improves early postresuscitation reperfusion after prolonged cardiac arrest in rats. J Cereb Blood Flow Metab 2003; 23:574–581.

    Article  PubMed  CAS  Google Scholar 

  308. Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY. Polyethylene glycol-conjugated dismutase and catalase reduce ischemic brain injury. Am J Physiol 1989; 256:H589–H593.

    PubMed  CAS  Google Scholar 

  309. Itoh T, Kawakami M, Yamauchi Y, Shimizu S, Nakamura M. Effecet of allopurinol on ischemia and reperfusion-induced cerebral injury in spontaneous hypertensive rats. Stroke 1986; 17:1284–1287.

    PubMed  CAS  Google Scholar 

  310. Forsman M, Fleischer JE, Milde JH, Steen PA, Michenfelder JD. Superoxide dismutase and catalase failed to improve neurological outcome after cerebral ischemia in the dog. Acta Anaesthesiol Scand 1988; 32:152–155.

    Article  PubMed  CAS  Google Scholar 

  311. Reich H, Safar P, Angelos M, Basford R, ernster L. Failure of a multifaceted anti-reoxygenation injury (RI) therapy to ameliorate brain damage after ventricular fibrillation (VF) cardiac arrest (CA) of 20 minutes in dogs [abstract]. Crit Care Med 1988; 16:387.

    Google Scholar 

  312. Cerchiari EL, Sclabassi RJ, Safar P, Hoel TM. Effects of combined superoxide dismutase and deferoxamine on recovery of brainstem auditory evoked potentials and EEG after asphyxial cardiac arrest in dogs. Resuscitation 1990,19:25–40.

    Article  PubMed  CAS  Google Scholar 

  313. Shigeno T, Yamasaki Y, Kato G, et al. Reduction of delayed neuronal death by inhibition of protein synthesis. Neurosci Lett 1990; 120:117–119.

    Article  PubMed  CAS  Google Scholar 

  314. Davies AM. The Bcl-2 family of proteins, and the regulation of neuronal survival. Trends Neurosci 1995; 18:355–358.

    Article  PubMed  CAS  Google Scholar 

  315. Chen J, Graham SH, Nakayama M, Zhu RL, Jin K, Stetler RA, Simon RP. Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 1997; 17:2–10. Erratum in: J Cereb Blood Flow Metab 1998; 18:931.

    Article  PubMed  CAS  Google Scholar 

  316. Kitagawa K, Matsumoto M, Tsujimoto Y, et al. Amelioration of hippocampal neuronal damage after global ischemia by neuronal overexpression of Bcl-2 in transgenic mice. Stroke 1998; 29:2616–2621.

    PubMed  CAS  Google Scholar 

  317. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP. Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998; 18:4914–4928.

    PubMed  CAS  Google Scholar 

  318. Vogel P, Putten H, Popp E, Krumnikl JJ, et al. Improved resuscitation after cardiac arrest in rats expressing the baculovirus caspase inhibitor protein p35 in central neurons. Anesthesiology 2003; 99:112–121.

    Article  PubMed  CAS  Google Scholar 

  319. Harkema JM, Chaudry IH. Magnesium-adenosine triphosphate in the treatment of shock, ischemia and sepsis. Crit Care Med 1992; 20:263–275.

    Article  PubMed  CAS  Google Scholar 

  320. Fukunaga AF. Intravenous administration of large doses of adenosine or adenosine triphosphate with minimal blood pressure fluctuations. Life Sci 1995; 56:PL209–PL218.

    Article  PubMed  CAS  Google Scholar 

  321. Paskitti M, Reid KH. Use of an adenosine triphosphate-based ‘cocktail’ early in reperfusion substantially improves brain protein synthesis after global ischemia in rats. Neurosci Lett 2002; 331:147–150.

    Article  PubMed  CAS  Google Scholar 

  322. Krep H, Brinker G, Schwindt W, Hossmann KA. Endothelin type A-antagonist improves long-term neurological recovery after cardiac arrest in rats. Crit Care Med 2000; 28:2873–2880.

    Article  PubMed  CAS  Google Scholar 

  323. Krep H, Brinker G, Phillekamp F, Hossman KA. Treatment with an endothelin type A receptor-antagonist after cardiac arrest and resuscitation improves cerebral hemodynamic and functional recovery in rats. Crit Care Med 2000; 28:2866–2872.

    Article  PubMed  CAS  Google Scholar 

  324. Fischer Böttiger BW, Popov-Cenic S, Hossman KA. Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest: an experimental study in the cat. Intensive care Med 1996; 22:1214–1223.

    Article  Google Scholar 

  325. Safar P, Xiao F, Radovsky A, Tanigawa K, et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 1996; 27:105–113.

    PubMed  CAS  Google Scholar 

  326. Lin SR, O’Conner MJ, Fischer HW, King A. The effects of combined dextran and streptokinase on cerebral function and blood flow after cardiac arrest: an experimental study on the dog. Invest Radiol 1978; 13:490–498.

    Article  PubMed  CAS  Google Scholar 

  327. Böttiger BW, Bode C, Kern S, et al. Efficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation: A prospective clinical trial. Lancet 2001; 357:1583–1585.

    Article  PubMed  Google Scholar 

  328. Cullen JP, Aldrete JA, Janovsky L, Romo-Salas F. Protective action of phenytoin in cerebral ischemia. Anesth Analg 1979; 58:165–169.

    PubMed  CAS  Google Scholar 

  329. Aldrete JA, Romo-Salas F, Mazzia VD, Tan SL. Phenytoin for brain resuscitation after cardiac arrest: An uncontrolled clinical trial. Crit Care Med 1981; 9:474.

    Article  PubMed  CAS  Google Scholar 

  330. Ebmeyer U, Safar P, Radovsky A, et al. Thiopental combination treatments for cerebral resuscitation after prolonged cardiac arrest in dogs. Exploratory outcome study. Resuscitation 2000; 45:119–131.

    Article  PubMed  CAS  Google Scholar 

  331. Taft WC, Clifton GL, Blair RE, DeLorenzo RJ. Phenytoin protects against ischemia-produced neuronal cell death. Brain Res 1989; 483:143–148.

    Article  PubMed  CAS  Google Scholar 

  332. Kennedy C, Grave GD, Jehle JW. The effect of diphenylhydantoin on local cerebral blood flow. Neurology 1972; 22:451.

    Google Scholar 

  333. Varon S, Hagg T, Manthorpe M. Nerve growth factor in CNS repair and regeneration. Adv Exp Med Biol 1991; 296:267–276.

    PubMed  CAS  Google Scholar 

  334. Mattson MP, Murrain M, Gurthrie PB, Kater SB. Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 1989; 9: 3728–3740.

    PubMed  CAS  Google Scholar 

  335. Shigeno T, Mima T, Takakura K, Graham DI, Kato G, Hashimoto y, Furukawa S. Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci 1991; 11:2914–2919.

    PubMed  CAS  Google Scholar 

  336. Voll CL, Aver RN. Insulin attenuates ischemic brain damage independent of its hypoglycemic effect: J Cereb Blood Flow Metab 1991; 11:1006–1014.

    PubMed  CAS  Google Scholar 

  337. LeMay DR, Gehua L, Zelenock GB, D’Alecy G. Insulin administration protects neurological function in cerebral ischemia in rats. Stroke 1988; 19:1411–1419.

    PubMed  CAS  Google Scholar 

  338. Katz LM, Wang Y, Ebmeyer U, Radovsky A, Safar P. Glucose plus insulin improves cerebral outcome after asphyxial cardiac arrest. Neuroreport 1998; 9:3363–3367.

    PubMed  CAS  Google Scholar 

  339. Yarden Y. Growth factor receptor tyrosine kinases. Annu Rev Biochem 1988; 57:443–478.

    Article  PubMed  CAS  Google Scholar 

  340. Pillion DJ, Kim SJ, Kim H, Meezan E. Insulin signal transduction: the role of protein phosphorylation. Am J Med 1992; 303:40–52.

    CAS  Google Scholar 

  341. Sacks DB, Fujita-Yamaguchi Y, Gale RD, McDonald JM. Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta. Biochem J 1989; 263:803–812.

    PubMed  CAS  Google Scholar 

  342. Moss AM, Unger JW, Moxley RT, Livingston JN. Location of phosphotyrosine-containing proteins by immunocytochemistry in the rat forebrain corresponds to the distribution of the insulin receptor. Proc Natl Acad Sci USA 1990; 87:4453–4457.

    Article  PubMed  CAS  Google Scholar 

  343. Ting LP, Tu CL, Chou CK. Insulin-induced expression of human heat shock protein gene. J Biol Chem 1989; 264:3403–3408.

    Google Scholar 

  344. Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phophatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem 1997; 272:154–161.

    Article  PubMed  CAS  Google Scholar 

  345. Drews G, Debuyser A, Nenquin M, Henquin JC. Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms, including an increase in K+ permeability of the $-cell membrane. Endocrinology 1990; 126:1646–1653.

    PubMed  CAS  Google Scholar 

  346. Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303:436–444.

    Article  PubMed  CAS  Google Scholar 

  347. Jansson L. Influence of adrenaline on blood perfusion and vascular conductance of the whole pancreas and the islets of Langerhans in the rat. Arch Int Pharmacodyn 1991; 313:90–97.

    PubMed  CAS  Google Scholar 

  348. Rorsman P, Bokvist K, Ammala C, et al. Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells. Nature 1991; 349:44–79.

    Article  Google Scholar 

  349. Yu KT, Pessin JE, Czech MP. Regulation of insulin receptor kinase by multisite phosphorylation. Biochime 1985; 67:1081–1090.

    Article  CAS  Google Scholar 

  350. Sotomatsu A, Nakano M, Hirai S. Phospholipid peroxidation induced by the catechol-Fe3+ (Cu2+) complex: a possible mechanism of nigrostriatal cell damage. Arch Biochem Biophys 1990; 283: 334–341.

    Article  PubMed  CAS  Google Scholar 

  351. Callaham M, Madsen CD, Barton CW, Saunders CE, Pointer J. A randomized clinical trial of high-dose epinephrine and norepinephrine in prehospital cardiac arrest. JAMA 1992; 268:2667–2672.

    Article  PubMed  CAS  Google Scholar 

  352. Markov AK, Oglethorpe N, Grillis M, Neely WA, Hellems HK. Therapeutic action of fructose-1,6-diphosphate in traumatic shock. World Surg 1983; 7:430–406.

    Article  CAS  Google Scholar 

  353. Vexler ZS, Wong A, Francisco C, et al. Fructose-1, 6-biphosphate preserves intracellular glutathione and protects cortical neurons against oxidative stress. Brain Res 2003; 960:90–98.

    Article  PubMed  CAS  Google Scholar 

  354. Woodhall B, Kramer RS, Currie WD, Sanders AP. brain energetics and neurosurgery. A review of recent studies done at Duke University. J Neurosurgery 1971; 34:3–14.

    Article  CAS  Google Scholar 

  355. Furuichi Y, Katsuta K, Maeda M, et al. Neuroprotective action of tracolimus (FK506) in focal and global cerebral ischemnia in rodents: dose dependency, therapeutic time window and long-term efficacy. Brain Res 2003; 965:137–145.

    Article  PubMed  CAS  Google Scholar 

  356. Katsura K, Kurihara J, Hiraide T, Takahashi K, Kato H, Katayama Y. Effects of FK506 on the translocation of protein kinase C and CaM kinase II in the gerbil hippocampal CA1 neurons. Neurol Res 2003; 25:522–527.

    Article  PubMed  CAS  Google Scholar 

  357. Kirsmer AC, Linder KH, Wenzel V, Rainer B, Muller G, Lingnau W. Inhibition of nitric oxide improves coronary perfusion pressure and return of spontaneous circulation in a porcine cardiopulmonary resuscitation model. Crit Care Med 2001; 29:482–486.

    Article  Google Scholar 

  358. Sasaki T, Hamada J, Shibata M, Araki N, Fukuuchi Y. Inhibition of nitric oxide production during global ischemia ameliorates ischemic damage of pyramidal neurons in the hippocampus. Keio J Med 2001; 50:182–187.

    PubMed  CAS  Google Scholar 

  359. Ditchey RV, Winkler JV, Rhodes CA. Relative lack of coronary blood flow during closed-chest resuscitation in dogs. Circulation 1982; 66:297–302.

    PubMed  CAS  Google Scholar 

  360. Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 1990; 263; 1106–1113.

    Article  PubMed  CAS  Google Scholar 

  361. Sanders AB, Kern KB, Berg RA, Hilwig RW, Heidenrich J, Ewy GA. Survival and neurological outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Ann Emerg Med 2002; 40:553–562.

    Article  PubMed  Google Scholar 

  362. Ralston SH, Babbs CF, Niebauer MJ. Cardiopulmonary resuscitation with interposed abdominal compression in dogs. Anesth Analg 1982; 61:645–651.

    Article  PubMed  CAS  Google Scholar 

  363. Walker JW, Bruestle JC, White BC, Evans AT, Indreri R, Bialek H. Perfusion of the cerebral cortex by use of abdominal counterpulsation during cardiopulmonary resuscitation. Am J Emerg Med 1984; 2:391–393.

    Article  PubMed  CAS  Google Scholar 

  364. Howard M, Carruba C, Foss F, Janiak B, Hogan B, Guinness M. Interposed abdominal compression-CPR: its effects on parameters of coronary perfusion in human subjects. Ann Emerg Med 1987; 16: 253–259.

    Article  PubMed  CAS  Google Scholar 

  365. Berryman CR, Phillips GM. Interposed abdominal compression-CPR in human subjects. Ann Emerg Med 1984; 13:226–229.

    Article  PubMed  CAS  Google Scholar 

  366. Mateer J, Steuven HA, Thompson BM, Aprahamian C, Darin JC. Pre-hospital IAC-CPR versus standard CPR: Paramedic resuscitation of cardiac arrests. Am J Emerg Med 1985; 3:143–146.

    Article  PubMed  CAS  Google Scholar 

  367. Sack JB, Kesselbrenner MB, Bregman D. Survival from in-hospital cardiac arrest with interposed abdominal counter pulsation during cardiopulmonary resuscitation JAMA 1992; 267:379–385.

    Article  PubMed  CAS  Google Scholar 

  368. Sack JB, Kesselbrenner MB, Jarrad A. Interposed abdominal compression-cardiopulmonary resuscitation and resuscitation outcome during asystole and electromechanical dissociation. Circulation 1992; 86:1692–1700.

    PubMed  CAS  Google Scholar 

  369. Mateer JR, Stueven HA, Thompson BM., et al. Interposed abdominal compression CPR versus standard CPR in prehospital cardiopulomnary arrest: preliminary results. Ann Emerg Med 1984; 13:764–766.

    Article  PubMed  CAS  Google Scholar 

  370. Weiser FM, Adler LN, Kuhn LA. Hemodynamic effects of closed and open chest cardiac resuscitation in normal dogs, and those with acute myocardial infarction. Am J Cardiol 1962; 10:555–561.

    Article  PubMed  CAS  Google Scholar 

  371. Del Guercio LR, Feins NR, Cohn JD, Coomaraswamy RP, Wollman SB, State D. Comparison of blood flow during external and internal cardiac massage in man. Circulation 1965; 31/32(Suppl I):I-171–I-180.

    Google Scholar 

  372. Sanders AB, Kern K, Ewy GA, Atlas M, Bailey L. Improved resuscitation from cardiac arrest with open-chest massage. Ann Emerg Med 1984; 13:672.

    Article  PubMed  CAS  Google Scholar 

  373. Fleisher G, Sagy M, Swedlow DB, Belani K. Open-versus closed-chest cardiac compression in a canine model of pediatric cardiopulmonary resuscitation. Am J Emerg Med 1985; 3:305–310.

    Article  PubMed  CAS  Google Scholar 

  374. Kern KB, Sanders AB, Badylak SF, et al. Long-term survival with open-chest cardiac massage after ineffective closed-chest compression in a canine preparation. Circulation 1987; 75:498–503.

    PubMed  CAS  Google Scholar 

  375. Arai T, Dote K, Tsukahara I, Nitta K, Nagaro T. Cerebral blood flow during conventional, new and open-chest cardio-pulmonary resuscitation in dogs. Resuscitation 1984; 12:147–154.

    Article  PubMed  CAS  Google Scholar 

  376. Geehr EC, Lewis, Auerbach PS. Failure of open heart massage to improve survival after pre-hospital non-traumatic cardiac arrest. N Engl J Med 1986; 314:1189,1190.

    Article  PubMed  CAS  Google Scholar 

  377. Halperin HR, Guerci AD, Chandra N, et al. Vest inflation without simultaneous ventilation during cardiac arrest in dogs: improved survival from prolonged cardiopulmonary resuscitation. Circulation 1986; 74:1407–1415.

    PubMed  CAS  Google Scholar 

  378. Halperin HR, Tsitlik JE, Gelfand M, et al. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med 1993; 329:762–768.

    Article  PubMed  CAS  Google Scholar 

  379. Lurie KG. Active compression-decompression CPR: a progress report. Resuscitation 1994; 28: 115–122.

    Article  PubMed  CAS  Google Scholar 

  380. Lindner KH, Pfenninger EG, Lurie KG, Schürmann W, Lindner IM, Ahnefeld FW. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation 1993; 88:1254–1263.

    PubMed  CAS  Google Scholar 

  381. Lurie K, Zielinski T, McKnite S, Sukhum P. Improving the efficiency of cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Crit Care Med 2000; 28:N207–N209.

    Article  PubMed  CAS  Google Scholar 

  382. Voelckel WG, Lurie KG, Zielinski T, et al. The effects of positive end-expiratory pressure during active compression decompression cardiopulmonary resuscitation with the inspiratory threshold valve. Anesth Analg 2001; 92:967–974.

    Article  PubMed  CAS  Google Scholar 

  383. Lurie KG, Coffeen P, Shultz J, McKnite S, et al. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation 1995; 91:1629–1632.

    PubMed  CAS  Google Scholar 

  384. Lurie K, Zielinski T, McKnite S, Aufderheide T, Voelckel W. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation 2002; 105:124–129.

    Article  PubMed  Google Scholar 

  385. Plaisance P, Lurie KG, Payen D. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation 2000; 101:989–994.

    PubMed  CAS  Google Scholar 

  386. Wolcke BB, Mauer DK, Schoefmann MF, et al. Standard CPR versus active compression-decompression CPR with an impedance threshold valve in patients with out of hospital cardiac arrest [Abstract]. Resuscitation 2002; 55:115.

    Google Scholar 

  387. Cohen TJ, Goldner BG, Maccaro PC, et al. Comparison of active compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for cardiac arrests occurring in the hospital. N Engl J Med 1993; 329:1918–1921.

    Article  PubMed  CAS  Google Scholar 

  388. Lurie KG, Shultz JJ, Callaham ML, et al. Evaluation of active compression-decompression CPR in victims of out-of-hospital cardiac arrest. JAMA 1994; 271:1405–1411.

    Article  PubMed  CAS  Google Scholar 

  389. Schwab TM, Callaham ML, Madsen CD, Utecht TA. A randomized clinical trial of active compression-decompression CPR vs standard CPR in out-of-hospital cardiac arrest in two cities. JAMA 1995; 273:1261–1268.

    Article  PubMed  CAS  Google Scholar 

  390. Stiell IG, Hébert PC, Wells GA, et al. The Ontario trial of active compression-decompression cardiopulmonary resuscitation for in-hospital and prehospital cardiac arrest. JAMA 1996; 275:1417–1423.

    Article  PubMed  CAS  Google Scholar 

  391. Plaisance P, Lurie K, Vicaut E, et al. Comparison of standard cardiopulmonary resuscitation and active compression-decompression for out-of-hospital cardiac arrest. N Engl J Med 1999:341:569–575.

    Article  PubMed  CAS  Google Scholar 

  392. Mauer DK, Nolan J, Plaisance P, et al. Effect of active compression-decompression resuscitation (ACD-CPR) on survival: a combined analysis using individual patient data. Resuscitation 1999; 41:249–256.

    Article  PubMed  CAS  Google Scholar 

  393. Babbs CF, Weaver JC, Ralston S, Geddes LA. Cardiac, thoracic, and abdominal pump mechanisms in cardiopulmonary resuscitation: studies in an electrical model of the circulation. Am J Emerg Med 1984; 2:299–308.

    Article  PubMed  CAS  Google Scholar 

  394. Tang W, Weil MH, Schock RB, et al. Phased chest and abdominal compression-decompression. A new option for cardiopulmonary resuscitation. Circulation 1997; 95:1335–1340.

    PubMed  CAS  Google Scholar 

  395. Sterz FBW, Berzanovich A. Active compression-decompression of thorax and abdomen (Lifestick CPR) in patients with cardiac arrest [Abstract]. Circulation 1996; 94:19.

    Google Scholar 

  396. Arntz H, Agrawal R, Richter A, et al. Phased chest and abdominal compression-decompression versus conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest. Circulation 2001; 104: 768–772.

    Article  PubMed  CAS  Google Scholar 

  397. Adams JA, Bassuk J, Wu D, Kurlansky P. Survival and normal neurological outcome after CPR with periodic GZ acceleration and vasopressin. Resuscitation 2003; 56:215–221.

    Article  PubMed  CAS  Google Scholar 

  398. Adams JA, Mangino MJ, Bassuk J, Kurlansky P, Sackner MA. Novel CPR with periodic Gz acceleration. Resuscitation 2001; 51:55–62.

    Article  PubMed  CAS  Google Scholar 

  399. Reich H, Angelos M, Safar P, Sterz F, Leonov Y. Cardiac resuscitability with cardiopulmonary bypass after increasing ventricular fibrillation times in dogs. Ann Emerg Med 1990; 19:887–890.

    Article  PubMed  CAS  Google Scholar 

  400. Angelos MG, Gaddis ML, Gaddis GM, Leasure JE. Improved survival and reduced myocardial necrosis with cardiopulmonary bypass reperfusion in a canine model of coronary occlusion and cardiac arrest. Ann Emerg Med 1990; 19:1122–1128.

    Article  PubMed  CAS  Google Scholar 

  401. Angelos MG, Ward KR, Hobson J, Beckley PD. Organ blood flow following cardiac arrest in a swine low flow cardiopulmonary bypass model. Resuscitation 1994; 27:245–254.

    Article  PubMed  CAS  Google Scholar 

  402. Gazmuri RJ, Weil MH, von Planta M, Gazmuri RR, Shah DM, Rackow EC. Cardiac resuscitation by extracorporeal circulation after failure of convention CPR. J Lab Clin Med 1991; 118:65–73.

    PubMed  CAS  Google Scholar 

  403. Safar P, Abramson NS, Angelos M, et al. Emergency cardiopulmonary bypass for resuscitation from prolonged cardiac arrest. Am J Emerg Med 1990; 8:55–67.

    Article  PubMed  CAS  Google Scholar 

  404. Levine R, Gorayeb M, Safar P, Abramson N, Stezoski W, Kelsey S. Cardiopulmonary bypass after cardiac arrest in prolonged closed-chest CPR in dogs. Ann Emerg Med 1987; 16:620–627.

    Article  PubMed  CAS  Google Scholar 

  405. Martin GB, Nowak RM, Carden DL, Eisiminger RA, Tomlanovich MC. Cardiopulmonary bypass versus CPR as treatment for prolonged canine cardiopulmonary arrest. Ann Emerg Med 1987; 16:628–636.

    Article  PubMed  CAS  Google Scholar 

  406. Safar P, Abramson NS, Angelos M, et al. Emergency cardiopulmonary bypass for resuscitation from prolonged cardiac arrest. Am J Emerg Med 1990; 8:55–67.

    Article  PubMed  CAS  Google Scholar 

  407. Reichman RT, Joyo CI, Dembitsky WP, et al. Improved patient survival after cardiac arrest using a cardiopulmonary support system. Ann Thorac Surg 1990; 49; 101–105.

    Article  PubMed  CAS  Google Scholar 

  408. Phillips SJ, Zeff RH, Kongtahworn C, et al. Percutaneous cardiopulmonary bypass: application and indication for use. Ann Thorac Surg 1989; 47:121–123.

    Article  PubMed  CAS  Google Scholar 

  409. Martin GB, Rivers EP, Paradis NA, Goetting MG, Morris DC, Nowak RM. Emergency department cardiopulmonary bypass in the treatment of human cardiac arrest. Chest 1998; 113:743–751.

    PubMed  CAS  Google Scholar 

  410. Iijima T, Bauer R, Hossmann KA. Brain resuscitation by extracorporeal circulation after prolonged cardiac arrest in cats. Intensive Care Med 1993; 19:82–88.

    Article  PubMed  CAS  Google Scholar 

  411. del Nido PJ, Dalton HJ, Thompson AE, Siewers RD. Extracorporeal membrane oxygenator rescue in children during cardiac arrest after cardiac surgery. Circulation 1992; 86(5 Suppl 2):II300–II304.

    PubMed  Google Scholar 

  412. Walcott GP, Booker RG, Ideker RE. Defibrillation with a minimally invasive direct cardiac device. Resuscitation 2002; 55:301–307.

    Article  PubMed  Google Scholar 

  413. Buckman RF Jr, Badellino MM, Eynon AC, et al. Open-chest cardiac massage without major thoracotomy: metabolic indicators of coronary and cerebral perfusion. Resuscitation 1997; 34:247–253.

    Article  PubMed  Google Scholar 

  414. Paiva EF, Kern KB, Hilwig RW, Scalabrini A, Ewy GA. Minimally invasive direct cardiac massage versus closed-chest cardiopulmonary resuscitation in a porcine model of prolonged ventricular fibrillation cardiac arrest. Resuscitation 2000; 47: 287–299.

    Article  PubMed  CAS  Google Scholar 

  415. Tang W, Weil MH, Noc M, Sun S, Gazmuri RJ, Bisera J. Augmented efficacy of external CPR by intermittent occlusion of the ascending aorta. Circulation 1993; 88: 1916–1921.

    PubMed  CAS  Google Scholar 

  416. Nozari A, Rubertsson S, Wiklund L. Improved cerebral blood supply and oxygenation by aortic balloon occlusion combined with intra-aortic vasopressin administration during experimental cardiopulmonary resuscitation. Acta Anaesthesiol Scand 2000; 44:1209–1219.

    Article  PubMed  CAS  Google Scholar 

  417. Liu XL, Nozari S, Basu G, Ronquist S, Rubertsson S, Wiklund L. Neurological outcome after experimental cardiopulmonary resuscitation: a result of delayed and potentially treatable neuronal injury? Acta Aneasthesiol Scand 2002; 46:537–546.

    Article  CAS  Google Scholar 

  418. Nozari A, Rubertsson S, Gedeborg R, Nordgren A, Wiklund L. Maximisation of cerebral blood flow during experimental cardiopulmonary resuscitation does not ameliorate post-resuscitation hypoperfusion. Resuscitation 1999; 40:27–35.

    Article  PubMed  CAS  Google Scholar 

  419. Reed RL, Johnston TD, Chen Y, Fischer RP. Hypertonic saline alters plasma clotting times and platelet aggregation. J Trauma 1991; 31:8–14.

    PubMed  Google Scholar 

  420. Nolte D, Bayer M, Lehr HA, et al. Attenuation of postischeamic microvascular disturbances in striated muscle by hyperosmolar saline dextran. Am J Physiol 1992; 263:1411–1416.

    Google Scholar 

  421. Steinbauer M, Harris A, Hoffman T, Messmer K. Pharmacologic effects of dextrans on the postischemic leukocyte-endothelial interaction. Prog Appl Microcirc 1996; 22:114–125.

    Google Scholar 

  422. Otto CW, Yakaitis RW, Blitt CD. Mechanism of action of epinephrine and resuscitation from asphyxial arrest. Crit Care Med 1981; 9:364,365.

    PubMed  CAS  Google Scholar 

  423. Brown CG, Taylor RB, Werman HA, Luu T, Ashton J, Hamlin RL. Myocardial oxygen delivery/consumption during cardiopulmonary resuscitation: a comparison of epinephrine and phenylephrine. Ann Emerg Med 1988; 17:302–308.

    Article  PubMed  Google Scholar 

  424. Ditchey RV, Lindenfeld J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 1988; 78:382–389.

    PubMed  CAS  Google Scholar 

  425. Ditchey RV, Rubio-Perez A, Slinker BK. Beta-adrenergic blockade reduces myocardial injury during experimental cardiopulmonary resuscitation. J Am Coll Cardiol 1994; 24:804–812.

    PubMed  CAS  Google Scholar 

  426. Midei MG, Sugiura S, Maughan, L Sagawa K, Weisfeldt ML, Guerci AD. Preservation of ventricular function by treatment of ventricular fibrillation with phenylephrine. J Am Coll Cardiol 1990; 16: 489–494.

    PubMed  CAS  Google Scholar 

  427. Michael JR, Guerci AD, Koehler RC, et al. Mechanism by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation 1984; 69:822–835.

    PubMed  CAS  Google Scholar 

  428. Koide T, Wieloch TE, Siesjö BK. Circulating catecholamines modulate ischemic brain damage. J Cereb Blood Flow Metab 1986; 6:559–565.

    PubMed  CAS  Google Scholar 

  429. Chase PB, Kern KB, Sanders AB, Otto CW, Ewy GA. Effects of greater doses of epinephrine on both non-invasive and invasive measures of myocardial perfusion in blood flow during cardiopulmonary resuscitation. Crit Care Med 1993; 21:413–419.

    Article  PubMed  CAS  Google Scholar 

  430. Brown CG, Werman HA, Davis EA, Hamlin R, et al. Comparative effect of graded doses of epinephrine on regional brain blood flow during CPR in a swine model. Ann Emerg Med 1986; 15:1138–1144.

    Article  PubMed  CAS  Google Scholar 

  431. Menegazzi JJ, Davis EA, Yealy DM, et al. An experimental algorithm versus standard advanced cardiac life support in a swine model of out-of-hospital cardiac arrest. Ann Emerg Med 1993; 22:235–239.

    Article  PubMed  CAS  Google Scholar 

  432. Berkowitz ID, Gervais H, Schleien CL, Koehler RC, Dean JM, Traystman RJ. Epinephrine dosage effects on cerebral and myocardial blood flow in an infant swine model of cardiopulmonary resuscitation. Anesthesiol 1991; 75:1041–1050.

    Article  CAS  Google Scholar 

  433. Steill IG, Hebert MD, Weitzman BN, et al. High dose epinephrine in adult cardiac arrest. N Engl J Med 1992; 327:1045–1050.

    Article  Google Scholar 

  434. Brown CG, Martin DR, Pepe PE, et al. A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. The multicenter high-dose epinephrine study group. N Engl J Med 1992; 327:1051–1055.

    Article  PubMed  CAS  Google Scholar 

  435. Vandycke C, Martens P. High dose versus standard dose epinephrine in a cardiac arrest-a meta-analysis. Resuscitation 2000; 45:161–166.

    Article  PubMed  CAS  Google Scholar 

  436. Gedeborg R, Silander HC, Ronne-Engstrom E, Rubertsson S, Wiklund L. Adverse effects of high-dose epinephrine on cerebral blood flow during experimental cardiopulmonary resuscitation. Crit Care Med 2000; 28:1423–1430.

    Article  PubMed  CAS  Google Scholar 

  437. Roberts D, Landolfo K, Dobson K, Light RB. The effects of methoxamine and epinephrine on survival and regional distribution of cardiac output in dogs with prolonged ventricular fibrillation. Chest 1990; 98:999–1005.

    Article  PubMed  CAS  Google Scholar 

  438. Klouche K, Weil MH, Sun S, Tang W, Zhao DH. A comparison of “-methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation 2003; 57:93–100.

    Article  PubMed  CAS  Google Scholar 

  439. Weil MH, Bisera J, Trevino RP, Rackow EC. Cardiac output and end-tidal carbon-dioxide. Crit Care Med 1985; 13:907–909.

    PubMed  CAS  Google Scholar 

  440. Wenzel V, Lindner KH, Krismer AC, et al. Survival with full neurological recovery and no cerebral pathology after prolonged cardiopulmonary resuscitation with vasopressin in pigs. J Am Coll Cardiol 2000; 35:527–533.

    Article  PubMed  CAS  Google Scholar 

  441. Prengel AW, Lindner KH, Keller A. Cerebral oxygenation during cardiopulmonary resuscitation with epinephrine and vasopressin in pigs. Stroke 1996; 27:1241–1248.

    PubMed  CAS  Google Scholar 

  442. Voelckel WG, Lurie KG, McKnite S, et al. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cardiac arrest. Crit Care Med 2000; 28:3777–3783.

    Article  PubMed  CAS  Google Scholar 

  443. Voelckel WG, Lurie KG, McKnite S, et al. Effects of epinephrine and vasopressin in a piglet model of prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med 2002; 30:957–962.

    Article  PubMed  CAS  Google Scholar 

  444. Lurie KG, Voelckel WG, Iskos DN, et al. Combination drug therapy with vasopressin, adrenaline (epinephrine) and nitroglycerin improves vital organ blood flow in a porcine model of ventricular fibrillation. Resuscitation 2002; 54:187–194.

    Article  PubMed  CAS  Google Scholar 

  445. Stadlbauer KH, Wagner-Berger HG, Wenzel V, et al. Survival with full neurological recovery after prolonged cardiopulmonary resuscitation with a combination of vasopressin and epinephrine in pigs. Anesth Analg 2003; 96:1743–1749.

    Article  PubMed  CAS  Google Scholar 

  446. Stiell IG, Hebert PC, Wells GA, et al. Vasopressin versus epinephrine for inhospital cardiac arrest: a randomised controlled trial. Lancet 2001; 358:105–109.

    Article  PubMed  CAS  Google Scholar 

  447. Koehler RC, Michael JR. Cardiopulmonary resuscitation, brain blood flow, and neurological recovery. Crit Care Clin 1985; 1:205–222.

    PubMed  CAS  Google Scholar 

  448. Rivers EP, Rady MY, Martin GB, e H, Appelton T, Nowak RM. Venous hyperoxia after cardiac arrest: characterization of a defect in systemic oxygen utilization. Chest 1992; 102:1787–1793.

    Article  PubMed  CAS  Google Scholar 

  449. Kuisma M, Suominen P, Korpela R. Paediatric out-of-hospital cardiac arrests-epidemiology and outcome. Resuscitation 1995; 30:141–150.

    Article  PubMed  CAS  Google Scholar 

  450. Liberthson RR. Sudden death from cardiac causes in children and young adults. N Engl J Med 1996; 334:1039–1044.

    Article  PubMed  CAS  Google Scholar 

  451. Takeda T, Tanigawa K, Tanaka H, Hayashi Y, Goto E, Tanaka K. The assessment of three methods to verify tracheal tube placement in the emergency setting. Resuscitation 2003; 56:153–157.

    Article  PubMed  Google Scholar 

  452. Ornato JP, Shipley JB, Racht EM, et al. Multicenter study of a portable, hand-size, colorimetric endtidal carbon dioxide detection device. Ann Emerg Med 1992; 21:518–523.

    Article  PubMed  CAS  Google Scholar 

  453. Spaulding CM, Joly LM, Rosenberg A, et al. Immediate coronary angioraphy in survivors of out-of-hospital cardiac arrest N Engl J Med 1997; 336:1629–1633.

    Article  PubMed  CAS  Google Scholar 

  454. Tenaglia AN, Califf RM, Candela RJ, et al. Thrombolytic therapy in patients requiring cardiopulmonary resuscitation. Am J Cardiol 1991; 68:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  455. Wijdicks EF, Parisi JE, Sharborough FW. Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Ann Neurol 1994; 35:239–243.

    Article  PubMed  CAS  Google Scholar 

  456. Buyleart WA, Calle PA, Houbrechts HN. Serum electrolyte disturbances in the post-resuscitation period. The Cerebral resuscitation Study Group. Resuscitation 1989; 17(Suppl):S189–S206.

    Article  Google Scholar 

  457. Vukmir RB, Bircher NG, Radovsky A, Safar P. Sodium bicarbonate may improve outcome in dogs with brief or prolonged cardiac arrest. Crit care Med 1995; 23; 515–522.

    Article  PubMed  CAS  Google Scholar 

  458. Emerman CL, Pinchak AC Hagen JF, Hancock D. A comparison of venous blood gases during cardiac arrest. Am J Emerg Med 1988; 6:580–583.

    Article  PubMed  CAS  Google Scholar 

  459. Tucker KJ, Idris AH, Wenzek V, Orban DJ. Changes in arterial and mixed venous blood gases during untreated ventricular fibrillation and cardiopulmonary resuscitation. Resuscitation 1994; 28:137–141.

    Article  PubMed  CAS  Google Scholar 

  460. Idris AH, Staples ED, O’Brian D, et al. Effect of ventilation on acid-base balance and oxygenation during low blood flow states. Crit Care Med 1994; 22:1827–1834.

    Article  PubMed  CAS  Google Scholar 

  461. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 1986; 315:153–156.

    Article  PubMed  CAS  Google Scholar 

  462. Leong EC, Bendall JC, Boyd AC, Einstein R. Sodium bicarbonate improves the chance of resuscitation after 10 minutes of cardiac arrest in dogs. Resuscitation 2001; 51:309–315.

    Article  PubMed  CAS  Google Scholar 

  463. Filley G, Kindig N: Carbicarb, an alkalizing ion generating agent of possible clinical usefulness. Trans Am Clin Climatol Assoc 1984; 96:141–153.

    PubMed  CAS  Google Scholar 

  464. Shapiro J, Whalen M, Kucera R, Kindig N, Filley GF, Chan L. Brain pH responses to sodium bicarbonate during systemic acidosis. Am J Physiol 1989; 256:H1316–H1321.

    PubMed  CAS  Google Scholar 

  465. Katz LM, Wang Y, Rockoff S, Bouldin TW. Low-dose Carbicarb improves cerebral outcome after asphyxial cardiac arrest in rats. Ann Emerg Med 2002; 39:359–365.

    Article  PubMed  Google Scholar 

  466. Liu X, Nozari A, Rubertsson S, Wiklund L. Buffer administration during CPR promotes cerebral reperfusion after return of spontaneous circulation and mitigates post-resuscitation cerebral acidosis. Resuscitation 2002; 55:45–55.

    Article  PubMed  CAS  Google Scholar 

  467. Wiklund L, Ronquist G, Stjernström H, Waldenström A. Effects of alkaline buffer administration on survival and myocardial energy metabolism in pigs subjected to ventricular fibrillation and closed chest CPR. Acta Anaesthesiol Scand 1990; 34:430–439.

    PubMed  CAS  Google Scholar 

  468. von Planta M, Gudipati CV, Weil MH, Kraus LJ, Rackow EC. Effects of tromethamine and sodium bicarbonate buffers during cardiac resuscitation. J Clin Pharmacol 1988; 28:594–599.

    Google Scholar 

  469. De Feo P, Perriello G, De Cosmos S, et al. Comparison of glucose counterregulation during short-term and prolonged hypoglycemia in normal humans. Diabetes 1986; 35:563–569.

    Article  PubMed  Google Scholar 

  470. Siesjö BK, Ingvar M, Pelligrino D. Regional differences in vascular autoregulation in the rat brain in severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab 1983; 3:478–485.

    PubMed  Google Scholar 

  471. Ginsberg MD, Welsh FA, Budd WW. Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. Stroke 1980; 11:347–354.

    PubMed  CAS  Google Scholar 

  472. Nakakimura K, Fleischer JE, Drummond JC, et al. Glucose administration before cardiac arrest worsens neurological outcome in cats. Anesthesiology 1990; 72: 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  473. Katz LM, Wang Y, Ebmeyer U, Radovsky A, Safar P. Glucose plus insulin infusion improves cerebral outcome after asphyxial cardiac arrest. Neuroreport 1998; 9:3363–3367.

    PubMed  CAS  Google Scholar 

  474. Müllner M, Sterz F, Binder M, Schreiber W, Deimel A, Laggner AN. Blood glucose concentration after cardiopulmonary resuscitation influences functional neurological recovery in human cardiac arrest survivors. J Cereb Blood Flow Metab 1997; 17:430–436.

    Article  PubMed  Google Scholar 

  475. Longstreth WT Jr, Diehr P, Cobb LA, Hanson RW, Blair AD. Neurological outcome and blood glucose levels during out-of-hospital cardiopulmonary resuscitation. Neurology 1986; 36:1186–1191.

    PubMed  Google Scholar 

  476. Schultz CH, Rivers EP, Feldkamp CS, et al. A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest. Crit Care Med 1993; 21:1339–1347.

    Article  PubMed  CAS  Google Scholar 

  477. Katsura K, Kurihara J, Siesjö BK, Wieloch T. Acidosis enhances translocation of protein kinase C but not Ca (2+)/calmodulin-dependent protein kinase II to cell membranes during complete cerebral ischemia. Brain Res 1999; 849:119–127.

    Article  PubMed  CAS  Google Scholar 

  478. Martin GB, O’Brien JF, Best R, Goldman J, Tomlanovich MC, Nowak RM. Insulin and glucose levels during CPR in the canine model. Ann Emerg Med 1985; 14:293–297.

    Article  PubMed  CAS  Google Scholar 

  479. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15:269–290.

    Article  PubMed  CAS  Google Scholar 

  480. Rehncrona S, Rosen I, Siesjö BK. Excessive cellular acidosis: an important mechanism of neuronal damage in the brain? Acta Physiol Scand 1980; 110:435–437.

    PubMed  CAS  Google Scholar 

  481. Rehncrona S, Rosen I, Siesjö BK. Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1981; 1:297–311.

    PubMed  CAS  Google Scholar 

  482. Rehncrona S, Hauge HN, Siesjö BK. Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: Difference in effect by lactic acid and CO2. J Cereb Blood Flow Metab 1989; 9:65–70.

    PubMed  CAS  Google Scholar 

  483. Dietrich D, Alonso O, Busto R. Moderate hyperglycemia worsens acute blood-brain barrier injury after forebrain ischemia in rats. Stroke 1993; 24:111–115.

    PubMed  CAS  Google Scholar 

  484. Schurr A, Payne RS, Tseng MT, Miller JJ, Rigor BM. The Glucose paradox in cerebral ischemia. New insights. Ann NY Acad Sci 1999; 386:386–390.

    Article  Google Scholar 

  485. Schurr A, Payne RS, Miller JJ, Tseng MT. Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone is detrimental. J Neurosci Res 2001; 66:782–789.

    Article  PubMed  CAS  Google Scholar 

  486. Rayne RS, Teseng MT, Schurr A. The glucose paradox of cerebral ischemia: evidence for corticosterone involvement. Brain Res 2003; 971:9–17.

    Article  CAS  Google Scholar 

  487. Rello J, Valles J, Jubert P, et al. Lower respiratory tract infections following cardiac arrest and cardiopulmonary resuscitation. Clin Infect Dis 1995; 21:310–314.

    PubMed  CAS  Google Scholar 

  488. Dohi S. Postcardiopulmonary resuscitation pulmonary edema. Crit Care Med 1983; 11:434–437.

    Article  PubMed  CAS  Google Scholar 

  489. Liu Y, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 1998; 29:1679–1686.

    PubMed  CAS  Google Scholar 

  490. Zwemer CF, Whitesall SE, D’Alecy LG. Hypoxic cardiopulmonary-cerebral resuscitation fails to improve neurological outcome following cardiac arrest in dogs. Resuscitation 1995; 29:225–236.

    Article  PubMed  CAS  Google Scholar 

  491. Fercakova A, Marsala M, Marsala J. Influence of graded postischemic reoxygenation on reperfusion alterations in rabbit dorsal root ganglion neurons. J Hisrnforsch 1994; 35:295–302.

    CAS  Google Scholar 

  492. Rootwelt T, Loberg EM, Moen A, Oyasaeter S, Saugstad OD. Hypoxemia and reoxygentaion with 21% or 100% oxygen in newborn pigs: changes in blood pressure, base deficit, and hypoxanthine and brain morphology. Pediatr Res 1992; 32:107–113.

    PubMed  CAS  Google Scholar 

  493. Klaus S, Heringlake M, Gliemroth J, Pagel H, Staubach K, Bahlmann L. Biochemical tissue monitoring during hypoxia and reoxygenation. Resuscitation 2003; 56:299–305.

    Article  PubMed  CAS  Google Scholar 

  494. Ernster L: Biochemistry of reoxygenation injury. Crit care Med 1988; 16:947–953.

    Article  PubMed  CAS  Google Scholar 

  495. Douzinas EE, Patsouris E, Kypriades EM, et al. Hypoxaemic reperfusion ameliorates the histopathological changes in the pig brain after a severe global cerebral ischaemic insult. Intensive Care Med 2001; 27:905–910.

    Article  PubMed  CAS  Google Scholar 

  496. Kutzsche S, Ilves P, Kirkeby OJ, Saugstad OD. Hydrogen peroxide production in leukocytes during cerebral hypoxia and reoxygenation with 100% or 21% oxygen in newborn piglets. Pediatr Res 2001; 49:834–842.

    Article  PubMed  CAS  Google Scholar 

  497. Zwemer CF, Whitesall SE, D’Alecy LG. Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation 1994; 27:159–170.

    Article  PubMed  CAS  Google Scholar 

  498. Lipinski CA, Hicks SD, Callaway CW. Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats. Resuscitation 1999; 42:221–229.

    Article  PubMed  CAS  Google Scholar 

  499. Dietrich WD. Morphological manifestations of reperfusion injury in brain. Ann N Y Acad Sci 1994; 723:15–24.

    Article  PubMed  CAS  Google Scholar 

  500. Feet BA, Gilland E, Groenendaal F, et al. Cerebral excitatory amino acids and Na+, K+-ATPase activity during resuscitation of severely hypoxic newborn piglets. Acta Paediatr 1998; 87:889–895.

    Article  PubMed  CAS  Google Scholar 

  501. Vanicky I, Marsala M, Murar J, Marsala J. Prolonged postischemic hyperventilation reduces acute neuronal damage after 15 min of cardiac arrest in the dog. Neurosci Lett 1992; 135:167–170.

    Article  PubMed  CAS  Google Scholar 

  502. Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, Gruemer H, Young HF: Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 1991; 75:731–739.

    PubMed  CAS  Google Scholar 

  503. Safar P, Xiao F, Radovsky A, et al. Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 1996; 27:105–113.

    PubMed  CAS  Google Scholar 

  504. Rosner MJ, Daughton S. Cerebral perfusion pressure management in head injury. J Trauma 1990; 30:933–941.

    PubMed  CAS  Google Scholar 

  505. Ligas JR, Mosleshi F, Epstein MA. Occult positive end-expiratory pressure with different types of mechanical ventilators. J Crit Care 1990; 52:95–100.

    Article  Google Scholar 

  506. Krakovsky M, Rogatsky G, Zarchin N, Mayevsky A. Effect of hyperbaric oxygen therapy on survival after global cerebral ischemia in rats. Surg Neurol 1998; 49:412–416.

    Article  PubMed  CAS  Google Scholar 

  507. Kapp JP, Phillips M, Markov A, Smith RR. Hyperbaric oxygen after circulatory arrest: modification of postischemic encephalopathy. Neurosurg 1982; 11:496–499.

    Article  CAS  Google Scholar 

  508. Iwatsuki N, Takahashi M, Ono K, Tajima T. Hyperbaric oxygen combined with nicardipine administration accelerate neurological recovery after cerebral ischemia in a canine model. Crit Care Med 1992; 20:858–863.

    Google Scholar 

  509. Miljkovic-Lolic M, Silbergleit R, Fiskum G, Rosenthal RE. Neuroprotective effects of hyperbaric oxygen treatment in experimental focal cerebral ischemia are associated with reduced brain leukocyte myeloperoxidase activity. Brain Res 2003; 971:90–94.

    Article  PubMed  CAS  Google Scholar 

  510. Thom SR. Functional inhibition of leukocyte B2 integrins by hyperbaric oxygen in carbon monoxide-mediated brain injury in rats. Toxicol Appl Pharmacol 1993; 123:248–256.

    Article  PubMed  CAS  Google Scholar 

  511. Mink RB, Dutka AJ. Hyperbaric oxygen after cerebral ischemia in rabbits reduces brain vascular permeability and blood flow. Stroke 1995; 26:2307–2312.

    PubMed  CAS  Google Scholar 

  512. Wada K, Miyazawa LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 2002; 173:168–181.

    Google Scholar 

  513. Yin W, Badr AE, Mychaskiw G, Zhang JH. Down regulation of COX-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Res 2002; 926:165–171.

    Article  PubMed  CAS  Google Scholar 

  514. Gunther A, Manaenko A, Franke H, Dickel T, Berrouschot J, Wagner A, Illes P, Reinhardt R. Early biochemical and histological changes during hyperbaric or normobaric reoxygenation after in vitro ischaemia in primary corticoencephalic cell cultures of rats. Brain Res 2002; 946:130–138.

    Article  PubMed  CAS  Google Scholar 

  515. Rusyniak DE, Kirk MA, May JD, et al. Hyperbaric oxygen therapy in acute ischemic stroke: results of the Hyperbaric Oxygen in Acute Ischemic Stroke Trial Pilot Study. Stroke 2003; 34:571–574.

    Article  PubMed  Google Scholar 

  516. Rosenthal RE, Silbergleit R, Hof PR, Haywood Y, Fiskum G. Hyperbaric oxygen reduces neuronal death and improves neurological outcome after canine cardiac arrest. Stroke 2003; 34:1311–1316.

    Article  PubMed  Google Scholar 

  517. McKinley BA, Morris WP, Parmley CL, Butler BD. Brain parenchyma PO2, PCO2, and pH during and after hypoxic, ischemic brain insult in dogs. Crit Care Med 1996; 24:1858–1868.

    Article  PubMed  CAS  Google Scholar 

  518. Bogaert YE, Sheu KF, Hof PR, et al. Neuronal subclass-selective loss of pyruvate dehydrogenase immunoreactivity following canine cardiac arrest and resuscitation. Exp Neurol 2000; 161:115–126.

    Article  PubMed  CAS  Google Scholar 

  519. ACC/AHA Task Force Report. Guidelines for early management of patients with acute myocardial infarction. J Am Coll Cardiol 1990; 16:249–292.

    Google Scholar 

  520. Rivers EP, Wortsman J, Rady M, Blake HC, McGeorge FT, Buderer NM. The effect of the total cumulative epinephrine dose administered during human CPR on hemodynamic, oxygen transport, and utilization variables in the postresuscitation period. Chest 1994; 106:1499–1507.

    Article  PubMed  CAS  Google Scholar 

  521. Tang W, Weil MH, Sun SJ, Gazmuri RJ, Bisera J. Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 1993; 21:1046–1050.

    Article  PubMed  CAS  Google Scholar 

  522. Charlat ML, O’Neill PG, Hartley CJ, Roberts Bolli R. Prolonged abnormalities of the left ventricular diastolic wall thinning in the “stunned” myocardium in conscious dogs: time course and relation to systolic function. J Am Coll Cardiol 1989; 13:185–194.

    PubMed  CAS  Google Scholar 

  523. Rady MY, Rivers EP, Martin GB, Smithline H, Appelton T, Nowak RM. Continuous central venous oximetry and shock index in the emergency department: use in the evaluation of clinic shock. Am J Emerg Med 1992; 10:538–541.

    Article  PubMed  CAS  Google Scholar 

  524. Stoddard MF, Longaker RA. The safety of transesophageal echocardiography in the elderly. Am Heart J 1993; 125:1358–1362.

    Article  PubMed  CAS  Google Scholar 

  525. Rivers EP, McGeorge FT, Boczar ME. A hemodynamic comparison of mechanical, standard, and active compression-decompression CPR in human cardiac arrest [Abstract]. Clin Intensive Care 1994; 5:S30.

    Google Scholar 

  526. Rivers EP, Rady MY, Martin BG, et al. Venous hyperoxia after cardiac arrest. Chest 1992; 102: 1787–1793.

    Article  PubMed  CAS  Google Scholar 

  527. Rivers EP, Wortsman J, Rady MY, Blake HC, McGeorge FT, Buderer NM. The effects of the total cumulative epinephrine dose administered during human CPR on hemodynamics, oxygen transport, and utilization in the postresuscitation period. Chest 1994; 106:1499–1507.

    Article  PubMed  CAS  Google Scholar 

  528. Bernard GR, Sopko G, Cerra F, et al. Pulmonary artery catheterization and clinical outcomes: National Heart, Lung, and Blood Institute and Food and Drug Administration Workshop Report. Consensus Statement. JAMA 2000; 283:2568–2572.

    Article  PubMed  CAS  Google Scholar 

  529. Meyer RJ, Kern KB, Berg RA, Hilwig RW, Ewy GA. Post-resuscitation right ventricular dysfunction: delineation and treatment with dobutamine. Resuscitation 2002; 55:187–191.

    Article  PubMed  CAS  Google Scholar 

  530. Voelckel WG, Lindner KH, Wenzel V, et al. Effect of small-dose dopamine on mesenteric blood flow and renal function in a pig model of cardiopulmonary resuscitation with vasopressin. Anesth Analg 1999; 89:1430–1436.

    Article  PubMed  CAS  Google Scholar 

  531. Leir CV. Regional blood flow response to vasodilators and inotropes in congestive heart failure. Am J Cardiol 1988; 25:75–83.

    Google Scholar 

  532. Figulla HR. Circulatory support devices in clinical cardiology. Current concepts. Cardiology 1994; 84:149–155.

    PubMed  CAS  Google Scholar 

  533. Jaffe AS. The use of antiarrhythmics in advanced cardiac life support. Ann Emerg Med 1993; 22:307–316.

    Article  PubMed  CAS  Google Scholar 

  534. DiMarco JP, Miles W, Akhtar M, et al. Adenosine for paraxosmal supraventricular tachycardia: dose ranging and comparison with verapamil: assessment in placebo-controlled, multicenter trials: the Adenosine for PSVT Study Group. Ann Intern Med 1990; 113:104–110.

    PubMed  CAS  Google Scholar 

  535. Hashimi-Idrissi S, Corne L, Huyghens L. The effect of mild hypothermia and induced hypertension on long term survival rate and neurological outcome after asphyxial cardiac arrest in rats. Resuscitation 2001; 49:73–82.

    Article  Google Scholar 

  536. Sterz F, Leonov Y, Safar P, Radovsky A, Tisherman SA, Oku K. Hypertension with or without hemodilution after cardiac arrest in dogs. Stroke 1990; 21:1178–1184.

    PubMed  CAS  Google Scholar 

  537. Spivey WH, Abramson NS, Safar P. Correlation of blood pressure with mortality and neurological recovery in comatose postresuscitation patients [abstract]. Ann Emerg Med 1991; 20:453.

    Google Scholar 

  538. Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. The no-reflow phenomenon. Am J Pathol 1968; 52:437–453.

    PubMed  Google Scholar 

  539. Smrcka M, Horky M, Otevrel F, Kuchtickova S, Kotola V, Muzik J. The onset of apoptosis of neurons induced by ischemia-reperfusion injury is delayed by transient period of hypertension in rats. Physiol Res 2003; 52:117–122.

    PubMed  CAS  Google Scholar 

  540. Hossman KA. Resuscitation potentials after proilonged global ischemia in cats. Crit Care Med 1988; 16:964–971.

    Article  Google Scholar 

  541. Hashimi-Idrissi S, Corne L, Huyghens L. The effect of mild hypothermia and induced hypertension on long term survival rate and neurological outcome after asphyxial cardiac arrest in rats. Resuscitation 2001; 49:73–82.

    Article  Google Scholar 

  542. Eriksson M, Saldeen T. Effect of dextran on plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) during surgery. Acta Anaesthesiol Scand 1995; 39:163–166.

    PubMed  CAS  Google Scholar 

  543. Krieter H, Denz C, Janke C, et al. Hypertonic-hyperoncotic solutions reduce the release of cardiac troponin I and s-100 after successful cardiopulmonary resuscitation in pigs. Anesth Analg 2002; 95:1031–1036.

    Article  PubMed  CAS  Google Scholar 

  544. Safar P, Sterz F, Leonov Y, Radovsky A, Tisherman S, Oku K. Systematic development of cerebral resuscitation after cardiac arrest. Three promising treatments: cardiopulmonary bypass, hypertensive hemodilution, and mild hypothermia. Acta Neurochir Suppl 1993; 57:110–121.

    CAS  Google Scholar 

  545. Klatzo I. Brain edema following brain ischaemia and the influence of therapy. Br J Anaesth 1985; 57:18–22.

    Article  PubMed  CAS  Google Scholar 

  546. Bleyaert AL, Sands PA, Safar P, et al. Augmentation of postischemic brain damage by severe intermittent hypertension. Crit Care Med 1980; 8:41–47.

    Article  PubMed  CAS  Google Scholar 

  547. Mullner M, Sterz F, Binder M, Hellwagner K, Meron G, Herkner H, Laggner AN. Arterial blood pressure after human cardiac arrest and neurological recovery. Stroke 1996; 27:59–62.

    PubMed  CAS  Google Scholar 

  548. Sasse HC, Safar P, Kelsey SF. Arterial hypertension after cardiac arrest is associated with good cerebral outcome in patients [Abstract]. Crit Care Med 1999; 27:A29.

    Article  Google Scholar 

  549. Hickey RW, Kochanek PM, Ferimer H, Graham SH, Safar P. Hypothermia and hyperthermia in children after resuscitation from cardiac arrest. Pediatrics 2000; 106:118–122.

    Article  PubMed  CAS  Google Scholar 

  550. Hickey RW, Kochanek PM, Ferimer H, Alexander HL, Garman RH, Graham SH. Induced hyperthermia exacerbates neuronal histologic damage after asphyxial cardiac arrest in rats. Crit Care Med 2003; 31:531–555.

    Article  PubMed  Google Scholar 

  551. Zeiner A, Holzer M, Sterz F, Schorkhuber W, Eisenberger P, Uray T, Behringer W. Hyperthermia after cardiac arrest is associated with an unfavorable neurological outcome. Arch Intern Med 2001; 161:2007–2012.

    Article  PubMed  CAS  Google Scholar 

  552. Morris MC, Nadkarni VM. Temperature regulation after cardiac arrest: Timing is everything! Crit Care Med 2003; 31:654,655.

    Article  PubMed  Google Scholar 

  553. Gaussorgues P, Gueugniaud PY, Vedrinne JM, Salord F, Mercatello A, Robert D. Bacteremia following cardiac arrest and cardiopulmonary resuscitation. Intensive Care Med 1988; 14:575–577.

    Article  PubMed  CAS  Google Scholar 

  554. Sweeney MS, Cooley DA, Reul GJ, Ott DA, Duncan JM. Hypothermic circulatory arrest for cardiovascular lesions: technical considerations and results. Ann Thorac Surg 1985; 40:498–503.

    Article  PubMed  CAS  Google Scholar 

  555. Weiss SJ, Muñiz AE, Ernst AA, Lippton HL, Nick TG. The Effect of Prior Hypothermia on the Physiological Response to Norepinephrine. Resuscitation 2000; 45:201–207.

    Article  PubMed  CAS  Google Scholar 

  556. Steen PA, Soule EH, Michenfelder JD. Detrimental effect of prolonged hypothermia in rats and monkeys with and without regional cerebral ischemia. Stroke 1979; 10:522–529.

    PubMed  CAS  Google Scholar 

  557. Rohrer MJ, Natale AM. Effect of hypothermia on the coagulation cascade. Crit Care Med 1992; 20:1402–1405.

    Article  PubMed  CAS  Google Scholar 

  558. Ji Y, Lui J. Numerical studies on the effect of lowering temperature on the oxygen transport during brain hypothermia resuscitation. Comput Biol Med 2002; 32:495–514.

    Article  PubMed  Google Scholar 

  559. Rosomoff HL. Protective effects of hypothermia against pathological processes of the nervous system. Ann N Y Acad Sci 1959; 80:475–486.

    Article  PubMed  CAS  Google Scholar 

  560. Benson DW, Williams GR, Spencer FC. The use of hypothermia after cardiac arrest. Anesth Analg 1958; 38:213–245.

    Google Scholar 

  561. Weinrauch V, Safar P, Tisherman S, Kuboyama K, Radovsky A. Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs. Stroke 1992; 23: 1454–1462.

    PubMed  CAS  Google Scholar 

  562. Holzer M, Behringer W, Schorkhuber W, et al. Hypothermia for Cardiac Arrest (HACA) Study Group. Mild hypothermia and outcome after CPR. Acta Anaesthsiol Scand Suppl 1997; 111:55–58.

    CAS  Google Scholar 

  563. Leonov Y, Sterz F, Safar P, Radovsky A, Oku K, Tisherman S, Stezoski SW. Mild cerebral hypothermia during and after cardiac arrest improves neurological outcome in dogs. J Cereb Blood Flow Metab 1990; 10:57–70.

    PubMed  CAS  Google Scholar 

  564. Sterz F, Safar P, Tisherman S, Radovsky A, Kuboyama K, Oku K. Mild hypothermic cardiopulmonary resuscitation improves outcome after prolonged arrest in dogs [see comments]. Crit Care Med 1991; 19:379–389.

    Article  PubMed  CAS  Google Scholar 

  565. Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7:729–738.

    PubMed  CAS  Google Scholar 

  566. Xiao F, Safar P, Radovsky A. Mild protective and resuscitative hypothermia for asphyxial cardiac arrest in rats. Am J Emerg Med 1998; 16:17–25.

    Article  PubMed  CAS  Google Scholar 

  567. Wass CT, Lanier WL, Hofer RE, Scheithauer BW, Andrews AG. temperature changes of > 1 C alter functional neurological outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology 1995; 83:325–335.

    Article  PubMed  CAS  Google Scholar 

  568. Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol 1954; 179:85–88.

    PubMed  CAS  Google Scholar 

  569. Kuboyama K, Safar P, Oku KL, et al. Mild hypothermia after cardiac arrest in dogs does not affect postarrest cerebral oxygen uptake/delivery mismatching. Resuscitation 1994; 27:231–244.

    Article  PubMed  CAS  Google Scholar 

  570. Oku K, Sterz F, Safar P, et al. Mild hypothermia after cardiac arrest in dogs does not affect postarrest multifocal cerebral hypoperfusion. Stroke 1993; 24:1590–1597.

    PubMed  CAS  Google Scholar 

  571. Busto R, Globus MY, Dietrich D, Martinez E, Valdes I, Ginsberg MD. Effect of mild hypothermia on ischemic-induced release of neurotransmitters and fatty acids in rat brain. Stroke 1989; 20: 904–910.

    PubMed  CAS  Google Scholar 

  572. Kumar K, Wu X, Evans AT, Marcoux F. The effects of hypothermia on induction of heat shock proteins (HSP)-72 in ischemic brain. Metab Brain Dis 1995; 10:283–291.

    Article  PubMed  CAS  Google Scholar 

  573. Kamme F, Campbell K, Wieloch T. Bipahsic expression of the fos and jun families of transcription factors following transient forebrain ischemia in the rat. Effect of hypothermia. Eur J neurosci 1995; 7:2007–2016.

    Article  PubMed  CAS  Google Scholar 

  574. Winfree CJ, Baker CJ, Connolly ES Jr, Fiore AJ, Solomon RA. Mild hypothermia reduces penumbal glutamate levels in the rat permanent focal cerebral ischemia model. Neurosurg 1996; 38:1216–1222.

    Article  CAS  Google Scholar 

  575. Kristian T, Katsura K, Siesjö BK. The influence of moderate hypothermia on cellular calcium uptake in complete ischemia: implications for the excitotoxic hypothesis. Acta Physiol Scand 1992; 146: 531,532.

    PubMed  CAS  Google Scholar 

  576. Kil HY, Zhang J, Piantadosi CA. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab 1996; 16:100–106.

    Article  PubMed  CAS  Google Scholar 

  577. Taft WC, Yang K, Dixon CE, Clifton GL, Hayes RL. Hypothermia attenuates the loss of hippocampal microtubule-associated protein 2 (MAP2) following traumatic brain injury. J Cereb Blood Flow Metab 1993; 13:796–802.

    PubMed  CAS  Google Scholar 

  578. Hicks SD, DeFranco DB, Callaway CW. Hypothermia during reperfusion after asphyxial cardiac arrest improves functional recovery and selectively alters stress-induced protein expression. J Cereb Blood Flow Metab 2000; 20:520–530.

    Article  PubMed  CAS  Google Scholar 

  579. Dempsey RJ, Combs DJ, Maley ME, Cowen DE, Roy MW, Donaldson DL. Moderate hypothermia reduces postischemic edema development and leukotriene production. Surgery 1987; 21:177–181.

    CAS  Google Scholar 

  580. Ginsburg MD, Busto R, Castella Y. The protective effect of moderate intraischemia brain hypothermia is associated with improved postischemic glucose utilization [abstract]. J Cereb Blood Flow Metab 1989; 9:S380.

    Google Scholar 

  581. D’Cruz BJ, Fertig KC, Filiano A, Hicks SD, DeFranco DB. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab 2002; 22: 843–851.

    Article  PubMed  CAS  Google Scholar 

  582. Shibano T, Morimoto Y, Kemmotsu O, Shikama H, Hisano K, Hua Y: Effects of mild and moderate hypothermia on apoptosis in neuronal PC12 cells. Br J Anaesth 2002; 89: 301–305.

    Article  PubMed  CAS  Google Scholar 

  583. Marion DW, Leonov Y, Ginsberg M, et al. Resuscitative hypothermia. Crit Care Med 1996; 24: S81–S89.

    PubMed  CAS  Google Scholar 

  584. Bernard SA, Jones BM, Horne MK: Clinical trial of induced hypothermia in comatose survivors of out-of-hospital cardiac arrest. Ann Emerg Med 1997; 30:146–153.

    Article  PubMed  CAS  Google Scholar 

  585. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346:557–563.

    Article  PubMed  Google Scholar 

  586. The Hypothermia After Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurological outcome after cardiac arrest. N Engl J Med 2002; 346:549–556.

    Article  Google Scholar 

  587. Schwab S, Schwarz S, Spranger M, Keller E, Bertram M, Hacke W. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke 1998; 29:2461–2466.

    PubMed  CAS  Google Scholar 

  588. Hachimi-Idrissi S, Corne L, Ebinger G, Michotte Y, Huyghens L. Mild hypothermia induced by a helmet device: a clinical feasibility study. Resuscitation 2001; 51:275–281.

    Article  PubMed  CAS  Google Scholar 

  589. Zeiner A, Holzer M, Sterz, F, et al. Mild resuscitative hypothermia to improve neurological outcome after cardiac arrest. A clinical feasibility trial. Hypothermia After cardiac Arrest (HACA) Study Group. Stroke 2000; 31:86–94.

    PubMed  CAS  Google Scholar 

  590. Felberg RA, Krieger DW, Chuang R, et al. Hypothermia after cardiac arrest: feasibility and safety of an external cooling protocol. Circulation 2001; 104:1799–1804.

    Article  PubMed  CAS  Google Scholar 

  591. Gunn AJ, Gluckman PD, Gunn TR. Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatrics 1998; 102:885–892.

    Article  PubMed  CAS  Google Scholar 

  592. Rajek A, Greif R, Sessler DL, Baumgardner J, Laciny S, Bastanmehr H. Core cooling by central venous infucion of ice-cold (4EC and 20EC) fluid: isolation of core and peripheral thermal compartments. Anesthesiology 2000; 93:629–637.

    Article  PubMed  CAS  Google Scholar 

  593. Brenard S, Buist M, Monteiro O, Smith K. Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest: A preliminary report. Resuscitation 2000; 56:9–13.

    Article  Google Scholar 

  594. Xiao F, Safar P, Alexander H. Peritoneal cooling for mild cerebral hypothermia after cardiac arrest in dogs. Resuscitation 1995; 30:51–59.

    Article  PubMed  CAS  Google Scholar 

  595. Ao H, Moon JK, Tanimoto H, Sakanashi Y, Terasaki H. Jugular vein temperature reflects brain temperature during hypothermia. Resuscitation 2000; 45:111–118.

    Article  PubMed  CAS  Google Scholar 

  596. Henker RA, Brown SD, Marion DW. Comparison of brain temperature with bladder and rectal temperatures in adults in adults with severe head injury. Neurosurgey 1998; 42:1071–1075.

    Article  CAS  Google Scholar 

  597. Ao H, Tanimoto H, Yoshitake A, Moon JK, Terasaki H. Long-term mild hypothermia with extracorporeal lung and heart assist improves survival from prolonged cardiac arrest in dogs. Resuscitation 2001; 48:163–174.

    Article  PubMed  CAS  Google Scholar 

  598. Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 1993; 13:541–549.

    PubMed  CAS  Google Scholar 

  599. Colubourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab 1999; 19:742–749.

    Article  Google Scholar 

  600. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 1997; 336:540–546.

    Article  PubMed  CAS  Google Scholar 

  601. Pomeranz S, Safar P, Radovsky A, Tisherman SA, Alexander H, Stezoski W. The effect of resuscitative moderate hypothermia following epidural brain compression on cerebral damage in a canine outcome model. J Neurosurg 1993; 79:241–251.

    Article  PubMed  CAS  Google Scholar 

  602. Ebmeyer U, Safar P, Radovsky A, Obrist W, Alexander H, Pomeranz S. Moderate hypothermia for 48 hours after temporary epidural brain compression injury in a canine outcome model. J Neurotrauma 1998; 15:323–336.

    PubMed  CAS  Google Scholar 

  603. Nolan JP, Morley PT, Vanden Hoek TL, et al. ALS Task Force: Therapeutic hypothermia after cardiac arrest. An advisory statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation. Circulation 3002; 108:118–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Muñiz, A.E. (2005). Postresuscitation Cerebral Dysfunction. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:523

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:523

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics