Skip to main content

Monitoring Techniques During Resuscitation

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1319 Accesses

Abstract

Shock is a complex entity defined traditionally as a state in which the oxygen utilization or consumption needs of tissues are not matched by sufficient delivery of oxygen. This mismatch commonly results from states of altered tissue perfusion. From this perspective, cardiopulmonary arrest represents the most extreme of shock states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chittock DR, Ronco JJ, Russell JA. Monitoring of oxygen transport and oxygen consumption. In: Principles and Practice of Intensive Care Monitoring. Tobin MJ, ed. New York: McGraw-Hill, 1998, pp. 317–343.

    Google Scholar 

  2. Schumacker PT, Cain SM. The concept of a critical oxygen delivery. Intensive Care Med 1987; 13: 223–229.

    Article  PubMed  CAS  Google Scholar 

  3. Vincent JL. Lactate and biochemical indexes of oxygenation. In: Tobin MJ, ed. Principles and Practice of Intensive Care Monitoring. New York: McGraw-Hill, 1998, pp. 369–376.

    Google Scholar 

  4. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med 1988; 16:1117–1120.

    PubMed  CAS  Google Scholar 

  5. Shoemaker WC, Appel PL, Kram HB. Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest 1992; 102:208–215.

    Article  PubMed  CAS  Google Scholar 

  6. McDonald JL. Systolic and mean arterial pressures during manual and mechanical CPR in humans. Ann Emerg Med 1982; 11:292–295.

    Article  PubMed  CAS  Google Scholar 

  7. Paradis NA, Martin GB, Goetting MG, Rivers EP, Feingold M, Nowak RM. Aortic pressure during human cardiac arrest. Identification of pseudo-electromechanical dissociation. Chest 1992; 101: 123–128.

    Article  PubMed  CAS  Google Scholar 

  8. Kern K, Niemann J. Coronary perfusion pressure during cardiopulmonary resuscitation. In: Paradis N, Halperin H, Nowak R, eds. Cardiac Arrest: The science and practice of resuscitation medicine. Baltimore, MD: Williams and Wilkins, 1996, pp. 270–284.

    Google Scholar 

  9. Ditchey RV, Lindenfeld J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 1988; 78:382–389.

    PubMed  CAS  Google Scholar 

  10. Chase PB, Kern KB, Sanders AB, Otto CW, Ewy GA. Effects of graded doses of epinephrine on both noninvasive and invasive measures of myocardial perfusion and blood flow during cardiopulmonary resuscitation. Crit Care Med 1993; 21:413–419.

    Article  PubMed  CAS  Google Scholar 

  11. Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation [see comments]. JAMA 1990; 263:1106–1113.

    Article  PubMed  CAS  Google Scholar 

  12. Paradis NA, Martin GB, Rosenberg J, et al. The effect of standard-and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation. Jama 1991; 265: 1139–1144.

    Article  PubMed  CAS  Google Scholar 

  13. Downey J. Compression of the coronary arteries by the fibrillating canine heart. Circ Res 1976; 39:53–57.

    PubMed  CAS  Google Scholar 

  14. Downey JM, Chagrasulis RW, Hemphill V. Quantitative study of intramyocardial compression in the fibrillating heart. Am J Physiol 1979; 237:H191–H196.

    PubMed  CAS  Google Scholar 

  15. Kern KB, Lancaster L, Goldman S, Ewy GA. The effect of coronary artery lesions on the relationship between coronary perfusion pressure and myocardial blood flow during cardiopulmonary resuscitation in pigs. Am Heart J 1990; 120:324–333.

    Article  PubMed  CAS  Google Scholar 

  16. Kern KB, de la Guardia B, Ewy GA. Myocardial perfusion during cardiopulmonary resuscitation (CPR): effects of 10, 25 and 50% coronary stenoses. Resuscitation 1998; 38:107–111.

    Article  PubMed  CAS  Google Scholar 

  17. Martin GB, Carden DL, Nowak RM, Lewinter JR, Johnston W, Tomlanovich MC. Aortic and right atrial pressures during standard and simultaneous compression and ventilation CPR in human beings. Ann Emerg Med 1986; 15:125–130.

    Article  PubMed  CAS  Google Scholar 

  18. Niemann JT, Criley JM, Rosborough JP, Niskanen RA, Alferness C. Predictive indices of successful cardiac resuscitation after prolonged arrest and experimental cardiopulmonary resuscitation. Ann Emerg Med 1985; 14:521–528.

    Article  PubMed  CAS  Google Scholar 

  19. Lodato RF. Arterial pressure monitoring. In: Tobin MJ, ed. Principles and practice of intensive care monitoring. New York: McGraw-Hill, 1998. pp. 733–749.

    Google Scholar 

  20. Angelos MG, DeBehnke DJ, Leasure JE. Arterial blood gases during cardiac arrest: markers of blood flow in a canine model. Resuscitation 1992; 23:101,111.

    Article  PubMed  CAS  Google Scholar 

  21. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med 1986; 315: 153–156.

    Article  PubMed  CAS  Google Scholar 

  22. Gazmuri RJ, von Planta M, Weil MH, Rackow EC. Arterial PCO2 as an indicator of systemic perfusion during cardiopulmonary resuscitation. Crit Care Med 1989; 17:237–240.

    Article  PubMed  CAS  Google Scholar 

  23. von Planta M. Acid-base and electrolyte management. In: Weil MH, Tang W, eds. CPR: Resuscitation of the arrested Heart. Philadelphia, PA: W.B. Saunders, 1999, pp. 37–52.

    Google Scholar 

  24. Carden DL, Martin GB, Nowak RM, Foreback CC, Tomlanovich MC. Lactic acidosis as a predictor of downtime during cardiopulmonary arrest in dogs. Am J Emerg Med 1985; 3:120–124.

    Article  PubMed  CAS  Google Scholar 

  25. Carden DL, Martin GB, Nowak RM, Foreback CC, Tomlanovich MC. Lactic acidosis during closedchest CPR in dogs. Ann Emerg Med 1987; 16:1317–1320.

    Article  PubMed  CAS  Google Scholar 

  26. Prause G, Ratzenhofer-Comenda B, Smolle-Juttner F, et al. Comparison of lactate or BE during out-of-hospital cardiac arrest to determine metabolic acidosis. Resuscitation 2001; 51:297–300.

    Article  PubMed  CAS  Google Scholar 

  27. Mullner M, Sterz F, Domanovits H, Behringer W, Binder M, Laggner AN. The association between blood lactate concentration on admission, duration of cardiac arrest, and functional neurological recovery in patients resuscitated from ventricular fibrillation. Intensive Care Med 1997; 23:1138–1143.

    Article  PubMed  CAS  Google Scholar 

  28. Tuchschmidt JA, Mecher CE. Predictors of outcome from critical illness. Shock and cardiopulmonary resuscitation. Crit Care Clin 1994; 10:179–195.

    PubMed  CAS  Google Scholar 

  29. Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med 1983; 11:449–451.

    PubMed  CAS  Google Scholar 

  30. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 1991; 99:956–962.

    Article  PubMed  CAS  Google Scholar 

  31. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 1996; 171:221–226.

    Article  PubMed  CAS  Google Scholar 

  32. Rivers EP, Rady MY, Martin GB, et al. Venous hyperoxia after cardiac arrest. Characterization of a defect in systemic oxygen utilization. Chest 1992; 102:1787–1793.

    Article  PubMed  CAS  Google Scholar 

  33. Rivers EP, Wortsman J, Rady MY, Blake HC, McGeorge FT, Buderer NM. The effect of the total cumulative epinephrine dose administered during human CPR on hemodynamic, oxygen transport, and utilization variables in the postresuscitation period. Chest 1994; 106:1499–1507.

    Article  PubMed  CAS  Google Scholar 

  34. Luchette FA, Robinson BR, Friend LA, McCarter F, Frame SB, James JH. Adrenergic antagonists reduce lactic acidosis in response to hemorrhagic shock. J Trauma 1999; 46:873–880.

    PubMed  CAS  Google Scholar 

  35. Tucker KJ, Idris AH, Wenzel V, Orban DJ. Changes in arterial and mixed venous blood gases during untreated ventricular fibrillation and cardiopulmonary resuscitation. Resuscitation 1994; 28:137–141.

    Article  PubMed  CAS  Google Scholar 

  36. Jay GD, Hughes L, Renzi FP. Pulse oximetry is accurate in acute anemia from hemorrhage. Ann Emerg Med 1994; 24:32–35.

    PubMed  CAS  Google Scholar 

  37. Severinghaus JW, Spellman MJ, Jr. Pulse oximeter failure thresholds in hypotension and vasoconstriction. Anesthesiology 1990; 73:532–537.

    Article  PubMed  CAS  Google Scholar 

  38. Hess DR. Capnometry. In: Tobin MJ, ed. Principals and Practice of Intensive Care Monitoring. New York: McGraw-Hill, 1998, pp. 377–400.

    Google Scholar 

  39. Ward KR, Yealy DM. End-tidal carbon dioxide monitoring in emergency medicine, Part 1: Basic principles. Acad Emerg Med 1998; 5:628–636.

    PubMed  CAS  Google Scholar 

  40. Kalenda Z. The capnogram as a guide to the efficacy of cardiac massage. Resuscitation 1978; 6:259–263.

    Article  PubMed  CAS  Google Scholar 

  41. Hindman BJ. Sodium bicarbonate in the treatment of subtypes of acute lactic acidosis: physiologic considerations. Anesthesiology 1990; 72:1064–1076.

    PubMed  CAS  Google Scholar 

  42. Dubin A, Murias G, Estenssoro E, et al. End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med 2000; 26:1619–1623.

    Article  PubMed  CAS  Google Scholar 

  43. Relman AS. Letter. N Engl J Med 1986; 315:1618.

    Article  Google Scholar 

  44. Guzman JA, Lacoma FJ, Najar A, Kruse JA. End-tidal partial pressure of carbon dioxide as a noninvasive indicator of systemic oxygen supply dependency during hemorrhagic shock and resuscitation. Shock 1997; 8:427–431.

    PubMed  CAS  Google Scholar 

  45. Sato Y, Weil MH, Tang W. Tissue hypercarbic acidosis as a marker of acute circulatory failure (shock). Chest 1998; 114:263–274.

    PubMed  CAS  Google Scholar 

  46. Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ. Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 1998; 85:2360–2364.

    PubMed  CAS  Google Scholar 

  47. Schlichtig R, Mehta N, Gayowski TJ. Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J Crit Care 1996; 11:51–56.

    Article  PubMed  CAS  Google Scholar 

  48. Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 1994; 76:2443–2451.

    PubMed  CAS  Google Scholar 

  49. Sanders AB, Atlas M, Ewy GA, Kern KB, Bragg S. Expired PCO2 as an index of coronary perfusion pressure. Am J Emerg Med 1985; 3:147–149.

    Article  PubMed  CAS  Google Scholar 

  50. Kern KB, Sanders AB, Voorhees WD, Babbs CF, Tacker WA, Ewy GA. Changes in expired end-tidal carbon dioxide during cardiopulmonary resuscitation in dogs: a prognostic guide for resuscitation efforts. J Am Coll Cardiol 1989; 13:1184–1189.

    PubMed  CAS  Google Scholar 

  51. Lewis LM, Stothert J, Standeven J, Chandel B, Kurtz M, Fortney J. Correlation of end-tidal CO2 to cerebral perfusion during CPR. Ann Emerg Med 1992; 21:1131–1134.

    Article  PubMed  CAS  Google Scholar 

  52. Martin GB, Gentile NT, Paradis NA, Moeggenberg J, Appleton TJ, Nowak RM. Effect of epinephrine on end-tidal carbon dioxide monitoring during CPR. Ann Emerg Med 1990; 19:396–398.

    Article  PubMed  CAS  Google Scholar 

  53. Cantineau JP, Merckx P, Lambert Y, Sorkine M, Bertrand C, Duvaldestin P. Effect of epinephrine on end-tidal carbon dioxide pressure during prehospital cardiopulmonary resuscitation. Am J Emerg Med 1994; 12:267–270.

    Article  PubMed  CAS  Google Scholar 

  54. Callaham M, Barton C, Matthay M. Effect of epinephrine on the ability of end-tidal carbon dioxide readings to predict initial resuscitation from cardiac arrest. Crit Care Med 1992; 20:337–343.

    Article  PubMed  CAS  Google Scholar 

  55. Ward KR, Yealy DM. End-tidal carbon dioxide monitoring in emergency medicine, Part 2: Clinical applications. Acad Emerg Med 1998; 5:637–646.

    Article  PubMed  CAS  Google Scholar 

  56. Ward KR, Menegazzi JJ, Zelenak RR, Sullivan RJ, McSwain NE, Jr. A comparison of chest compressions between mechanical and manual CPR by monitoring end-tidal PCO2 during human cardiac arrest. Ann Emerg Med 1993; 22:669–674.

    Article  PubMed  CAS  Google Scholar 

  57. Babbs CF, Voorhees WD, Fitzgerald KR, et al. Relationship of blood pressure and flow during CPR to chest compression amplitude. Ann Emerg Med 1983; 12:527–532.

    Article  PubMed  CAS  Google Scholar 

  58. Ornato JP, Gonzalez ER, Garnett AR, Levine RL, McClung BK. Effect of cardiopulmonary resuscitation compression rate on end-tidal carbon dioxide concentration and arterial pressure in man. Crit Care Med 1988; 16:241–245.

    Article  PubMed  CAS  Google Scholar 

  59. Callaham M, Barton C. Prediction of outcome of cardiopulmonary resuscitation from end-tidal carbon dioxide concentration. Crit Care Med 1990; 18:358–362.

    Article  PubMed  CAS  Google Scholar 

  60. Sanders AB, Kern KB, Otto CW, Milander MM, Ewy GA. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. A prognostic indicator for survival. JAMA 1989; 262:1347–1351.

    Article  PubMed  CAS  Google Scholar 

  61. Cantineau JP, Lambert Y, Merckx P, et al. End-tidal carbon dioxide during cardiopulmonary resuscitation in humans presenting mostly with asystole: a predictor of outcome. Crit Care Med 1996; 24: 791–796.

    Article  PubMed  CAS  Google Scholar 

  62. Asplin BR, White RD. Prognostic value of end-tidal carbon dioxide pressures during out-of-hospital cardiac arrest. Ann Emerg Med 1995; 25:756–761.

    Article  PubMed  CAS  Google Scholar 

  63. Levine RL, Wayne MA, Miller CC. End-tidal carbon dioxide and outcome of out-of-hospital cardiac arrest. N Engl J Med 1997; 337:301–306.

    Article  PubMed  CAS  Google Scholar 

  64. Wayne MA, Levine RL, Miller CC. Use of end-tidal carbon dioxide to predict outcome in prehospital cardiac arrest. Ann Emerg Med 1995; 25:762–767.

    Article  PubMed  CAS  Google Scholar 

  65. Sanders AB, Ewy GA, Bragg S, Atlas M, Kern KB. Expired PCO2 as a prognostic indicator of successful resuscitation from cardiac arrest. Ann Emerg Med 1985; 14:948–952.

    Article  PubMed  CAS  Google Scholar 

  66. Garnett AR, Ornato JP, Gonzalez ER, Johnson EB. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. Jama 1987; 257:512–515.

    Article  PubMed  CAS  Google Scholar 

  67. De Maria AN, Raisinghani A. Comparative overview of cardiac output measurement methods: has impedance cardiography come of age? Congest Heart Fail 2000; 6:60–73.

    Article  PubMed  Google Scholar 

  68. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med 1998; 158:77–83.

    PubMed  CAS  Google Scholar 

  69. Botero M, Lobato EB. Advances in noninvasive cardiac output monitoring: an update. J Cardiothorac Vasc Anesth 2001; 15:631–640.

    Article  PubMed  CAS  Google Scholar 

  70. Murias GE, Villagra A, Vatua S, et al. Evaluation of a noninvasive method for cardiac output measurement in critical care patients. Intensive Care Med 2002; 28:1470–1474.

    Article  PubMed  Google Scholar 

  71. Ivatury RR, Simon RJ, Havriliak D, Garcia C, Greenbarg J, Stahl WM. Gastric mucosal pH and oxygen delivery and oxygen consumption indices in the assessment of adequacy of resuscitation after trauma: a prospective, randomized study. J Trauma 1995; 39:128–134; discussion 34–36.

    PubMed  CAS  Google Scholar 

  72. Ward KR, Ivatury RR, Barbee RW. Endpoints of resuscitation for the victim of trauma. J Intensive Care Med 2001; 16:55–75.

    Article  Google Scholar 

  73. Porter JM, Ivatury RR. In search of the optimal end points of resuscitation in trauma patients: a review. J Trauma 1998; 44:908–914.

    PubMed  CAS  Google Scholar 

  74. Maynard N, Bihari D, Beale R, et al. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure [see comments]. JAMA 1993; 270:1203–1210.

    Article  PubMed  CAS  Google Scholar 

  75. Gutierrez G, Bismar H, Dantzker DR, Silva N. Comparison of gastric intramucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med 1992; 20:451–457.

    PubMed  CAS  Google Scholar 

  76. Gutierrez G, Palizas F, Doglio G, et al. Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients [see comments]. Lancet 1992; 339:195–199.

    Article  PubMed  CAS  Google Scholar 

  77. Marik PE. Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 1993; 104:225–229.

    Article  PubMed  CAS  Google Scholar 

  78. Light RB. Intrapulmonary oxygen consumption in experimental pneumococcal pneumonia. J Appl Physiol 1988; 64:2490–2495.

    PubMed  CAS  Google Scholar 

  79. Rivers EP, Martin GB, Smithline H, et al. The clinical implications of continuous central venous oxygen saturation during human CPR. Ann Emerg Med 1992; 21:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  80. Rady MY, Rivers EP, Martin GB, Smithline H, Appelton T, Nowak RM. Continuous central venous oximetry and shock index in the emergency department: use in the evaluation of clinical shock. Am J Emerg Med 1992; 10:538–541.

    Article  PubMed  CAS  Google Scholar 

  81. Scalea TM, Hartnett RW, Duncan AO, et al. Central venous oxygen saturation: a useful clinical tool in trauma patients. J Trauma 1990; 30:1539–1543.

    PubMed  CAS  Google Scholar 

  82. Ander DS, Jaggi M, Rivers E, et al. Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department. Am J Cardiol 1998; 82(7):888–91.

    Article  PubMed  CAS  Google Scholar 

  83. Nguyen HB, Rivers EP, Muzzin A, Knoblich B, Havstad S, Tomlanovich M. Central venous oxygen saturation/lactic acid index as an early indicator of survival of patients in shock (abstract). Acad Emerg Med 2000; 7:586,587.

    Google Scholar 

  84. Gomersall CD, Joynt GM, Freebairn RC, Hung V, Buckley TA, Oh TE. Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med 2000; 28:607–614.

    Article  PubMed  CAS  Google Scholar 

  85. Rivers EP, Nguyen HB, Havstad S, et al. Early goal-directed therapy in the treatment of the systemic inflammatory response syndrome (SIRS): An outcome evaluation of emergency department intervention (abstract). Acad Emerg Med 2000; 5:427.

    Google Scholar 

  86. Ma MH, Huang GT, Wang SM, et al. Aortic valve disruption and regurgitation complicating CPR detected by transesophageal echocardiography. Am J Emerg Med 1994; 12:601,602.

    Article  PubMed  CAS  Google Scholar 

  87. Hilty WM, Hudson PA, Levitt MA, Hall JB. Real-time ultrasound-guided femoral vein catheterization during cardiopulmonary resuscitation. Ann Emerg Med 1997; 29:331–336; discussion 37.

    Article  PubMed  CAS  Google Scholar 

  88. Hrics P, Wilber S, Blanda MP, Gallo U. Ultrasound-assisted internal jugular vein catheterization in the ED. Am J Emerg Med 1998; 16:401–403.

    Article  PubMed  CAS  Google Scholar 

  89. Schlichtig R, Kramer DJ, Pinsky MR. Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol 1991; 70:169–178.

    PubMed  CAS  Google Scholar 

  90. Bowles SA, Schlichtig R, Kramer DJ, Klions HA. Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs. J Crit Care 1992; 7: 95–105.

    Article  Google Scholar 

  91. Tremper KK, Mentelos RA, Shoemaker WC. Effect of hypercarbia and shock on transcutaneous carbon dioxide at different electrode temperatures. Crit Care Med 1980; 8:608–612.

    Article  PubMed  CAS  Google Scholar 

  92. Tremper KK, Shoemaker WC, Shippy CR, Nolan LS. Transcutaneous PCO2 monitoring on adult patients in the ICU and the operating room. Crit Care Med 1981; 9:752–755.

    PubMed  CAS  Google Scholar 

  93. Shoemaker WC, Thangathurai D, Wo CC, et al. Intraoperative evaluation of tissue perfusion in high-risk patients by invasive and noninvasive hemodynamic monitoring. Crit Care Med 1999; 27:2147–2152.

    Article  PubMed  CAS  Google Scholar 

  94. Ivatury RR, Simon RJ, Islam S, Fueg A, Rohman M, Stahl WM. A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 1996; 183:145–154.

    PubMed  CAS  Google Scholar 

  95. Hurley R, Chapman MV, Mythen MG. Current status of gastrointestinal tonometry. Current Opin Crit Care 2000; 6:130–135.

    Article  Google Scholar 

  96. Weil MH, Nakagawa Y, Tang W, et al. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock [see comments]. Crit Care Med 1999; 27:1225–1229.

    Article  PubMed  CAS  Google Scholar 

  97. Nakagawa Y, Weil MH, Tang W, et al. Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 1998; 157(Pt 1):1838–1843.

    PubMed  CAS  Google Scholar 

  98. McKinley BA, Parmley CL, Butler BD. Skeletal muscle PO2, PCO2, and pH in hemorrhage, shock, and resuscitation in dogs. J Trauma 1998; 44:119–127.

    PubMed  CAS  Google Scholar 

  99. McKinley BA, Ware DN, Marvin RG, Moore FA. Skeletal muscle pH, P(CO2), and P(O2) during resuscitation of severe hemorrhagic shock. J Trauma 1998; 45:633–636.

    PubMed  CAS  Google Scholar 

  100. Guyton AC. The systemic circulation. In: Guyton AC, ed. Textbook of Medical Physiology. 6th ed. Philadelphia, PA: W.B. Saunders, 1981, p. 219.

    Google Scholar 

  101. Shepherd JT. Circulation to skeletal muscle. In: Shepherd JT, Abboud FM, Geiger SR, eds. Handbook of Physiology. Bethesda, MD: American Physiology Society, 1983, pp. 319–370.

    Google Scholar 

  102. von Planta M, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 1989; 80:684–692.

    Google Scholar 

  103. Reilly PM, Bulkley GB. Vasoactive mediators and splanchnic perfusion. Crit Care Med 1993; 21:S55–S68.

    Article  PubMed  CAS  Google Scholar 

  104. Ward KR. Visceral organ ischemia and reperfusion in cardiac arrest. In: Paradis N, Halperin H, Nowak R, eds. Cardiac Arrest: The science and practice of resuscitation medicine. Baltimore, MD: Williams and Wilkins, 1996, pp. 160–184.

    Google Scholar 

  105. Morris DC, Dereczyk BE, Grzybowski M, et al. Vasopressin can increase coronary perfusion pressure during human cardiopulmonary resuscitation. Acad Emerg Med 1997; 4:878–883.

    PubMed  CAS  Google Scholar 

  106. Wortsman J, Paradis NA, Martin GB, et al. Functional responses to extremely high plasma epinephrine concentrations in cardiac arrest. Crit Care Med 1993; 21:692–697.

    Article  PubMed  CAS  Google Scholar 

  107. Toung T, Reilly PM, Fuh KC, Ferris R, Bulkley GB. Mesenteric vasoconstriction in response to hemorrhagic shock. Shock 2000; 13:267–273.

    PubMed  CAS  Google Scholar 

  108. Abello PA, Buchman TG, Bulkley GB. Shock and multiple organ failure. Adv Exp Med Biol 1994; 366:253–268.

    PubMed  CAS  Google Scholar 

  109. Baron P, Traber LD, Traber DL, et al. Gut failure and translocation following burn and sepsis. J Surg Res 1994; 57:197–204.

    Article  PubMed  CAS  Google Scholar 

  110. Deitch EA, Bridges W, Berg R, Specian RD, Granger DN. Hemorrhagic shock-induced bacterial translocation: the role of neutrophils and hydroxyl radicals. J Trauma 1990; 30:942–951; discussion 51–52.

    PubMed  CAS  Google Scholar 

  111. Deitch EA. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 1990; 125:403,404.

    PubMed  CAS  Google Scholar 

  112. Deitch EA. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg 1992; 216:117–134.

    Article  PubMed  CAS  Google Scholar 

  113. Guzman JA, Kruse JA. Splanchnic hemodynamics and gut mucosal-arterial PCO(2) gradient during systemic hypocapnia. J Appl Physiol 1999; 87:1102–1106.

    PubMed  CAS  Google Scholar 

  114. Guzman JA, Lacoma FJ, Kruse JA. Relationship between systemic oxygen supply dependency and gastric intramucosal PCO2 during progressive hemorrhage. J Trauma 1998; 44:696–700.

    PubMed  CAS  Google Scholar 

  115. Janssens U, Graf J, Koch KC, vom Dahl J, Hanrath P. Gastric tonometry in patients with cardiogenic shock and intra-aortic balloon counterpulsation [In Process Citation]. Crit Care Med 2000; 28:3449–3455.

    Article  PubMed  CAS  Google Scholar 

  116. Sato Y, Weil MH, Tang W, Sun S, Xie J, Bisera J, et al. Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 1997; 82:558–562.

    PubMed  CAS  Google Scholar 

  117. Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J. Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 2000; 118:1127–1132.

    Article  PubMed  CAS  Google Scholar 

  118. Povoas HP, Weil MH, Tang W, Sun S, Kamohara T, Bisera J. Decreases in mesenteric blood flow associated with increases in sublingual PCO2 during hemorrhagic shock. Shock 2001; 15:398–402.

    Article  PubMed  CAS  Google Scholar 

  119. Marik PE. Sublingual capnography: a clinical validation study. Chest 2001; 120:923–927.

    Article  PubMed  CAS  Google Scholar 

  120. Tatevossian RG, Wo CC, Velmahos GC, Demetriades D, Shoemaker WC. Transcutaneous oxygen and CO2 as early warning of tissue hypoxia and hemodynamic shock in critically ill emergency patients. Crit Care Med 2000; 28:2248–53.

    Article  PubMed  CAS  Google Scholar 

  121. McKinley BA, Butler BD. Comparison of skeletal muscle PO2, PCO2, and pH with gastric tonometric P(CO2) and pH in hemorrhagic shock [see comments]. Crit Care Med 1999; 27:1869–1877.

    Article  PubMed  CAS  Google Scholar 

  122. Owen-Reece H, Smith M, Elwell CE, Goldstone JC. Near infrared spectroscopy. Br J Anaesth 1999; 82:418–426.

    PubMed  CAS  Google Scholar 

  123. Reich D. Near-infrared spectroscopy: theory and applications. J Cardiothorac Vasc Anesth 1996; 10:406–418.

    Article  Google Scholar 

  124. Cairns CB, Moore FA, Haenel JB, et al. Evidence for early supply independent mitochondrial dysfunction in patients developing multiple organ failure after trauma. J Trauma 1997; 42:532–536.

    PubMed  CAS  Google Scholar 

  125. McKinley BA, Marvin RG, Cocanour CS, Moore FA. Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry. J Trauma 2000; 48:637–642.

    PubMed  CAS  Google Scholar 

  126. Cohn SM, Varela JE, Giannotti G, et al. Splanchnic perfusion evaluation during hemorrhage and resuscitation with gastric near-infrared spectroscopy. J Trauma 2001; 50:629–634.

    PubMed  CAS  Google Scholar 

  127. Varela JE, Cohn SM, Giannotti GD, et al. Near-infrared spectroscopy reflects changes in mesenteric and systemic perfusion during abdominal compartment syndrome. Surgery 2001; 129:363–370.

    Article  PubMed  CAS  Google Scholar 

  128. Mullner M, Sterz F, Binder M, Hirschl MM, Janata K, Laggner AN. Near infrared spectroscopy during and after cardiac arrest—preliminary results. Clin Intensive Care 1995; 6:107–111.

    PubMed  CAS  Google Scholar 

  129. Nemoto EM, Yonas H, Kassam A. Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med 2000; 28:1052–1054.

    Article  PubMed  CAS  Google Scholar 

  130. Newman DH, Freed J, Callaway CW. Cerebral oximetry and ventilation rate changes in out-of-hospital cardiac arrest. Ann Emerg Med 2002; 40:77.

    Google Scholar 

  131. Buunk G, van der Hoeven JG, Meinders AE. A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest. Anaesthesia 1998; 53:13–19.

    Article  PubMed  CAS  Google Scholar 

  132. Moller P, Sylven C. Myoglobin in human skeletal muscle. Scand J Clin Lab Invest 1981; 41:479–482.

    PubMed  CAS  Google Scholar 

  133. Nemeth PM, Lowry OH. Myoglobin levels in individual human skeletal muscle fibers of different types. J Histochem Cytochem 1984; 32:1211–1216.

    PubMed  CAS  Google Scholar 

  134. Tran TK, Sailasuta N, Kreutzer U, et al. Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am J Physiol 1999; 276(Pt 2):R1682–R1690.

    PubMed  CAS  Google Scholar 

  135. Sterz F, Leonov Y, Safar P, et al. Multifocal cerebral blood flow by Xe-CT and global cerebral metabolism after prolonged cardiac arrest in dogs. Reperfusion with open-chest CPR or cardiopulmonary bypass. Resuscitation 1992; 24:27–47.

    Article  PubMed  CAS  Google Scholar 

  136. Wolfson SK, Jr., Safar P, Reich H, et al. Dynamic heterogeneity of cerebral hypoperfusion after prolonged cardiac arrest in dogs measured by the stable xenon/CT technique: a preliminary study. Resuscitation 1992; 23:1–20.

    Article  PubMed  Google Scholar 

  137. Leonov Y, Sterz F, Safar P, Johnson DW, Tisherman SA, Oku K. Hypertension with hemodilution prevents multifocal cerebral hypoperfusion after cardiac arrest in dogs. Stroke 1992; 23:45–53.

    PubMed  CAS  Google Scholar 

  138. Oku K, Kuboyama K, Safar P, et al. Cerebral and systemic arteriovenous oxygen monitoring after cardiac arrest. Inadequate cerebral oxygen delivery. Resuscitation 1994; 27:141–152.

    Article  PubMed  CAS  Google Scholar 

  139. Mullner M, Sterz F, Domanovits H, Zeiner A, Laggner AN. Systemic and cerebral oxygen extraction after human cardiac arrest. Eur J Emerg Med 1996; 3:19–24.

    Article  PubMed  CAS  Google Scholar 

  140. Niemann JT, Cairns CB, Sharma J, Lewis RJ. Treatment of prolonged ventricular fibrillation. Immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 1992; 85:281–287.

    PubMed  CAS  Google Scholar 

  141. Niemann JT, Cruz B, Garner D, Lewis RJ. Immediate countershock versus cardiopulmonary resuscitation before countershock in a 5-minute swine model of ventricular fibrillation arrest. Ann Emerg Med 2000; 36:543–546.

    Article  PubMed  CAS  Google Scholar 

  142. Cobb LA, Fahrenbruch CE, Walsh TR, et al. Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 1999; 281:1182–1188.

    Article  PubMed  CAS  Google Scholar 

  143. Brown CG, Griffith RF, Van Ligten P, et al. Median frequency—a new parameter for predicting defibrillation success rate. Ann Emerg Med 1991; 20:787–789.

    Article  PubMed  CAS  Google Scholar 

  144. Brown CG, Dzwonczyk R, Martin DR. Physiologic measurement of the ventricular fibrillation ECG signal: estimating the duration of ventricular fibrillation. Ann Emerg Med 1993; 22:70–74.

    Article  PubMed  CAS  Google Scholar 

  145. Dzwonczyk R, Brown CG, Werman HA. The median frequency of the ECG during ventricular fibrillation: its use in an algorithm for estimating the duration of cardiac arrest. IEEE Trans Biomed Eng 1990; 37:640–646.

    Article  PubMed  CAS  Google Scholar 

  146. Strohmenger HU, Lindner KH, Keller A, Lindner IM, Pfenninger E, Bothner U. Effects of graded doses of vasopressin on median fibrillation frequency in a porcine model of cardiopulmonary resuscitation: results of a prospective, randomized, controlled trial. Crit Care Med 1996; 24:1360–1365.

    Article  PubMed  CAS  Google Scholar 

  147. Strohmenger HU, Lindner KH, Keller A, Lindner IM, Pfenninger EG. Spectral analysis of ventricular fibrillation and closed-chest cardiopulmonary resuscitation. Resuscitation 1996; 33:155–161.

    Article  PubMed  CAS  Google Scholar 

  148. Noc M, Weil MH, Tang W, Sun S, Pernat A, Bisera J. Electrocardiographic prediction of the success of cardiac resuscitation. Crit Care Med 1999; 27:708–714.

    Article  PubMed  CAS  Google Scholar 

  149. Weaver WD, Cobb LA, Dennis D, Ray R, Hallstrom AP, Copass MK. Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest. Ann Intern Med 1985; 102:53–55.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ward, K.R., Barbee, R.W., Ivatury, R.R. (2005). Monitoring Techniques During Resuscitation. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:475

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:475

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics