Skip to main content

Chest Compression Technique

A Neglected Key to Success in Cardiopulmonary Resuscitation

  • Chapter
Cardiopulmonary Resuscitation

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The concept of “external cardiac massage,” first introduced in the early 1960s by Kouwenhoven, Jude, and Knickerbocker (1), includes chest compressions at a rate of 60 to 100 per minute in conjunction with mouth-to-mouth rescue breathing (2). Refinements of standard cardiopulmonary resuscitation (CPR) since its introduction in the 1960s have included increasing the rate of chest compression from 60 per minute to 100 per minute, which research makes little difference in blood flow (3), and recently decreasing the tidal volume of the positive pressure ventilations under certain circumstances (2,4). Elimination of the carotid artery pulse check in the year 2000 guidelines has abolished an unnecessary delay in starting chest compressions by lay rescuers. Yet for many of us, chest compression remains the centerpiece of resuscitation from full cardiopulmonary arrest, and there has been precious little investigation of how to do it properly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. JAMA 1960; 173: 1064–1067.

    PubMed  CAS  Google Scholar 

  2. Cummins RO. American Heart Association in collaboration with the International Liaison Committee on Resuscitation. Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: international consensus on science. Circulation 2000; 102(suppl I):I-1–I-384.

    Google Scholar 

  3. Fitzgerald KR, Babbs CF, Frissora HA, Davis RW, Silver DI. Cardiac output during cardiopulmonary resuscitation at various compression rates and durations. American Journal of Physiology 1981; 241:H442–H448.

    PubMed  CAS  Google Scholar 

  4. Idris AH. Reassessing the need for ventilation during CPR. Ann Emerg Med 1996; 27:569–75.

    Article  PubMed  CAS  Google Scholar 

  5. Babbs CF, Voorhees WD, Fitzgerald KR, Holmes HR, Geddes LA. Relationship of artificial cardiac output to chest compression amplitude—evidence for an effective compression threshold. Annals of Emergency Medicine 1983; 12:527–532.

    Article  PubMed  CAS  Google Scholar 

  6. Berg RA, Kern KB, Sanders AB, Otto CW, Hilwig RW, Ewy GA. Bystander cardiopulmonary resuscitation. Is ventilation necessary? Circulation 1993; 88:1907–15.

    PubMed  CAS  Google Scholar 

  7. Berg RA, Wilcoxson D, Hilwig RW, et al. The need for ventilatory support during bystander CPR. Ann Emerg Med 1995; 26:342–50.

    Article  PubMed  CAS  Google Scholar 

  8. Berg RA, Kern KB, Hilwig RW, et al. Assisted ventilation does not improve outcome in a porcine model of single-rescuer bystander cardiopulmonary resuscitation. Circulation 1997; 95:1635–41.

    PubMed  CAS  Google Scholar 

  9. Berg RA, Kern KB, Hilwig RW, Ewy GA. Assisted ventilation during ‘bystander’ CPR in a swine acute myocardial infarction model does not improve outcome. Circulation 1997; 96:4364–71.

    PubMed  CAS  Google Scholar 

  10. Berg RA, Sanders AB, Kern KB, et al. Adverse hemodynamic effects of rescue breathing during CPR for VF cardiac arrest. Circulation 2001; 104:2465–2470.

    Article  PubMed  CAS  Google Scholar 

  11. Kern KB, Hilwig RW, Berg RA, Ewy GA. Efficacy of chest compression-only BLS CPR in the presence of an occluded airway. Resuscitation 1998; 39:179–88.

    Article  PubMed  CAS  Google Scholar 

  12. Kern KB. Cardiopulmonary resuscitation without ventilation. Crit Care Med 2000; 28:N186–9.

    Article  PubMed  CAS  Google Scholar 

  13. Wilson E, Brooks B, Tweed WA. CPR skills retention of lay basic rescuers. Ann Emerg Med 1983; 12:482–4.

    Article  PubMed  CAS  Google Scholar 

  14. Bircher N, Otto C, Babbs C, et al. Future directions for resuscitation research. II. External cardiopulmonary resuscitation basic life support. Resuscitation 1996; 32:63–75.

    Article  PubMed  CAS  Google Scholar 

  15. Handley JA, Handley AJ. Four-step CPR—improving skill retention. Resuscitation 1998; 36:3–8.

    Article  PubMed  CAS  Google Scholar 

  16. Mair P, Furtwaengler W, Baubin M. Aortic-valve function during cardiopulmonary resuscitation. New England Journal of Medicine 1993; 329:1965–1966.

    Article  PubMed  CAS  Google Scholar 

  17. Criley JM, Blaufuss AH, Kissel GL. Cough-induced cardiac compression—a self-administered form of cardiopulmonary resuscitation. JAMA 1976; 236:1246–1250.

    Article  PubMed  CAS  Google Scholar 

  18. Criley JM, Niemann JT, Rosborough JP, Ung S, Suzuki J. The heart is a conduit in CPR. Crit Care Med 1981; 9:373–374.

    Article  PubMed  CAS  Google Scholar 

  19. Rudikoff MT, Maughan WL, Effron M, Freund P, Weisfeldt ML. Mechanisms of blood flow during cardiopulmonary resuscitation. Circulation 1980; 61:345–352.

    PubMed  CAS  Google Scholar 

  20. Weisfeldt ML. Physiology of cardiopulmonary resuscitation. Ann Rev Med 1981;435-442.

    Google Scholar 

  21. Feneley MP, Maier GW, Gaynor JW, et al. Sequence of mitral valve motion and transmitral blood flow during manual cardiopulmonary resuscitation in dogs. Circulation 1987; 76:363–375.

    PubMed  CAS  Google Scholar 

  22. Gall F. Incompetence of the atrioventricular valves during cardiac massage, J Cardiovasc Surg 6, 1965.

    Google Scholar 

  23. Paradis NA, Martin GB, Goetting MG, et al. Simultaneous aortic, jugular bulb, and right atrial pressures during cardiopulmonary resuscitation in humans: Insights into mechanisms. Circulation 1989; 80: 361–368.

    PubMed  CAS  Google Scholar 

  24. Chandra NC. Mechanisms of blood flow during CPR. Ann Emerg Med 1993; 22:281–288.

    Article  PubMed  CAS  Google Scholar 

  25. Beyar R, Kishon Y, Sideman S, Dinnar U. Computer studies of systemic and regional blood flow during cardiopulmonary resuscitation. Medical & Biological Engineering and Computing 1984; 22:499–506.

    Article  CAS  Google Scholar 

  26. Babbs CF, Geddes LA. Effects of abdominal counterpulsation in CPR as demonstrated in a simple electrical model of the circulation. Annals of Emergency Medicine 1983; 12:247.

    Article  Google Scholar 

  27. Babbs CF, Weaver JC, Ralston SH, Geddes LA. Cardiac, thoracic, and abdominal pump mechanisms in CPR: studies in an electrical model of the circulation. American Journal of Emergency Medicine 1984; 2:299–308.

    Article  PubMed  CAS  Google Scholar 

  28. Babbs CF, Ralston SH, Geddes LA. Theoretical advantages of abdominal counterpulsation in CPR as demonstrated in a simple electrical model of the circulation. Annals of Emergency Medicine 1984; 13:660–671.

    Article  PubMed  CAS  Google Scholar 

  29. Babbs CF, Thelander K. Theoretically optimal duty cycles for chest and abdominal compression during external cardiopulmonary resuscitation. Acad Emerg Med 1995; 2:698–707.

    PubMed  CAS  Google Scholar 

  30. Babbs CF. CPR techniques that combine chest and abdominal compression and decompression: hemodynamic insights from a spreadsheet model. Circulation 1999; 100:2146–2152.

    PubMed  CAS  Google Scholar 

  31. Maier GW, Newton JR, Wolfe JA, et al. The influence of manual chest compression rate on hemodynamic support during cardiac arrest: high-impulse cardiopulmonary resuscitation. Circulation 1986; 74(Suppl IV):IV-51–IV-59.

    CAS  Google Scholar 

  32. Maier GW, Tyson GS, Olsen CO, et al. The physiology of external cardiac massage: high-impulse cardiopulmonary resuscitation. Circulation 1984; 70:86–101.

    PubMed  CAS  Google Scholar 

  33. Babbs CF. High-impulse compression CPR: simple mathematics points to future research. Academic Emergency Medicine 1994; 1:418–422.

    Article  PubMed  CAS  Google Scholar 

  34. Halperin HR, Tsitlik JE, Guerci AD, et al. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation 1986; 73:539–550.

    PubMed  CAS  Google Scholar 

  35. Halperin HR, Tsitlik JE, Beyar R, Chandra N, Guerci AD. Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model. Ann Biomed Eng 1987; 15:385–403.

    Article  PubMed  CAS  Google Scholar 

  36. Tucker KJ, Idris A. Clinical and laboratory investigations of active compression-decompression cardiopulmonary resuscitation. Resuscitation 1994; 28:1–7.

    Article  PubMed  CAS  Google Scholar 

  37. Tucker KJ, Khan JH, Savitt MA. Active compression-decompression resuscitation: effects on pulmonary ventilation. Resuscitation 1993; 26:125–31.

    Article  PubMed  CAS  Google Scholar 

  38. Babbs CF, Tacker WA. Cardiopulmonary resuscitation with interposed abdominal compression. Circulation 1986; 74(Suppl IV):37–41.

    Google Scholar 

  39. Babbs CF. Interposed abdominal compression-CPR: a case study in cardiac arrest research. Ann Emerg Med 1993; 22:24–32.

    Article  PubMed  CAS  Google Scholar 

  40. Einagle V, Bertrand F, Wise RA, Roussos C, Magder S. Interposed abdominal compressions and carotid blood flow during cardiopulmonary resuscitation. Support for a thoracoabdominal unit. Chest 1988; 93:1206–1212.

    Article  PubMed  CAS  Google Scholar 

  41. Sack JB, Kesselbrenner MB, Bregman D. Survival from in-hospital cardiac arrest with interposed abdominal counterpulsation during cardiopulmonary resuscitation. JAMA 1992; 267:379–385.

    Article  PubMed  CAS  Google Scholar 

  42. Sack JB, Kesselbrenner MB. Hemodynamics, survival benefits, and complications of interposed abdominal compression during cardiopulmonary resuscitation. Acad Emerg Med 1994; 1:490–497.

    Article  PubMed  CAS  Google Scholar 

  43. DelGuercio L, Feins NR, Cohn JD, Coomaraswamy RP, Wollman SB, State D. Comparison of blood flow during external and internal cardiac massage in man. Circulation 1965; 31(Suppl I).

    Google Scholar 

  44. Redding JS, Cozine RA. A comparison of open chest and closed chest cardiac massage in dogs. Anesthesiology 1961; 22:280–285.

    Article  PubMed  CAS  Google Scholar 

  45. Babbs CF. Hemodynamic mechanisms in CPR: a theoretical rationale for resuscitative thoracotomy in non-traumatic cardiac arrest. Resuscitation 1987; 15:37–50.

    Article  PubMed  CAS  Google Scholar 

  46. Weiser FM, Adler LN, Kuhn LA. Hemodynamic effects of closed and open chest cardiac resuscitation in normal dogs and those with acute myocardial infarction. Am J Cardiol 1962; 10:555–561.

    Article  PubMed  CAS  Google Scholar 

  47. Sanders AB, Kern KB, Ewy GA, Atlas M, Bailey L. Improved resuscitation from cardiac arrest with open chest massage. Annal Emerg Med 1984; 13:672–675.

    Article  CAS  Google Scholar 

  48. Lurie KG, Coffeen P, Shultz J, McKnite S, Detloff B, Mulligan K. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation 1995; 91:1629–1632.

    PubMed  CAS  Google Scholar 

  49. Lindner KH, Pfenninger EG, Lurie KG, Schurmann W, Lindner IM, Ahnefeld FW. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation 1993; 88:1254–1263.

    PubMed  CAS  Google Scholar 

  50. Lurie KG, Lindo C, Chin J. CPR: The P stands for plumber’s helper. JAMA 1990; 264:1661.

    Article  PubMed  CAS  Google Scholar 

  51. Tang W, Weil MH, Schock RB, et al. Phased chest and abdominal compression-decompression. A new option for cardiopulmonary resuscitation. Circulation 1997; 95:1335–1340.

    PubMed  CAS  Google Scholar 

  52. Cohen TJ, Tucker KJ, Lurie KG, et al. Active compression-decompression. A new method of cardiopulmonary resuscitation. JAMA 1992; 267:2916–2923.

    Article  PubMed  CAS  Google Scholar 

  53. Chang MW, Coffeen P, Lurie KG, Shultz J, Bache RJ, White CW. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest 1994; 106: 1250–1259.

    Article  PubMed  CAS  Google Scholar 

  54. Plaisance P, Lurie KG, Payen D. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation 2000; 101:989–994.

    PubMed  CAS  Google Scholar 

  55. Wik L, Naess PA, Ilebekk A, Nicolaysen G, Steen PA. Effects of various degrees of compression and active decompression on haemodynamics, end-tidal CO2, and ventilation during cardiopulmonary resuscitation of pigs. Resuscitation 1996; 31:45–57.

    Article  PubMed  CAS  Google Scholar 

  56. Sunde K, Wik L, Naess PA, Ilebekk A, Nicolaysen G, Steen PA. Effect of different compression—decompression cycles on haemodynamics during ACD-CPR in pigs. Resuscitation 1998; 36:123–131.

    Article  PubMed  CAS  Google Scholar 

  57. Cummins RO. Advanced Cardiac Life Support. Emergency Cardiovascular Care Programs. Dallas: American Heart Association, 1997

    Google Scholar 

  58. Babbs CF, Thelander K. Theoretically optimal duty cycles for chest and abdominal compression during external cardiopulmonary resuscitation [see comments]. Acad Emerg Med 1995; 2:698–707.

    Article  PubMed  CAS  Google Scholar 

  59. Taylor GJ, Tucker WM, Greene HL, Rudikoff MT, Weisfeldt ML. Medical Intelligence—Importance of prolonged compression during cardiopulmonary resuscitation in man. N Engl J Med 1977; 296: 1515–1517.

    Article  PubMed  CAS  Google Scholar 

  60. Babbs CF, Blevins WE. Abdominal binding and counterpulsation in cardiopulmonary resuscitation. Critical Care Clinics 1986; 2:319–332.

    PubMed  CAS  Google Scholar 

  61. Boe JM, Babbs CF. Mechanics of cardiopulmonary resuscitation performed with the patient on a soft bed vs a hard surface. Acad Emerg Med 1999; 6:754–757.

    PubMed  CAS  Google Scholar 

  62. Locke CJ, Berg RA, Sanders AB, et al. Bystander cardiopulmonary resuscitation. Concerns about mouth-to-mouth contact. Arch Intern Med 1995; 155:938–943.

    Article  PubMed  CAS  Google Scholar 

  63. Becker LB, Berg RA, Pepe PE, et al. A reappraisal of mouth-to-mouth ventilation during bystander-initiated cardiopulmonary resuscitation. A statement for healthcare professionals from the Ventilation Working Group of the Basic Life Support and Pediatric Life Support Subcommittees, American Heart Association. Resuscitation 1997; 35:189–201.

    Article  PubMed  CAS  Google Scholar 

  64. Kern KB, Paraskos JA. 31st Bethesda Conference—Emergency Cardiac Care (1999). Journal of the American College of Cardiology 2000; 35:825–880.

    Article  Google Scholar 

  65. Pearson JW, Redding JS. Influence of peripheral vascular tone on cardiac resuscitation. Anesth Analg 1965; 44:746–752.

    Article  PubMed  CAS  Google Scholar 

  66. Ralston SH, Voorhees WD, Babbs CF, Tacker WA. Regional blood flow and short term survival following prolonged CPR. Medical Instrumentation 1981; 15:326.

    Google Scholar 

  67. Redding JS. Abdominal compression in cardiopulmonary resuscitation. Anesthesia and Analgesia 1971; 50:668–675.

    Article  PubMed  CAS  Google Scholar 

  68. Chamberlain D, Smith A, Colquhoun M, Handley AJ, Kern KB, Wollard M. Randomized controlled trials of staged teaching for basic life support. 2. Comparison of CPR performance and skill retention using either staged instruction or conventional teaching. Resuscitation 2001; 50:27–37.

    Article  PubMed  CAS  Google Scholar 

  69. Assar D, Chamberlain D, Colquhoun M, et al. Randomised controlled trials of staged teaching for basic life support. 1. Skill acquisition at bronze stage. Resuscitation 2000; 45:7–15.

    Article  PubMed  CAS  Google Scholar 

  70. Babbs CF, Kern KB. Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation 2002; 54:147–157.

    Article  PubMed  Google Scholar 

  71. Berg RA, Hilwig RW, Kern KB, Ewy GA. “Bystander” chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless “cardiac arrest.” Circulation 2000; 101:1743–1748.

    PubMed  CAS  Google Scholar 

  72. Noc M, Weil MH, Tang W, Turner T, Fukui M. Mechanical ventilation may not be essential for initial cardiopulmonary resuscitation. Chest 1995; 108:821–827.

    PubMed  CAS  Google Scholar 

  73. Hallstrom A, Cobb L, Johnson E, Copass M. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med 2000; 342:1546–1553.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Babbs, C.F. (2005). Chest Compression Technique. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics