Skip to main content

Regulatory Aspects of Membrane Microdomain (Raft) Dynamics in Live Cells

A Biophysical Approach

  • Chapter
Membrane Microdomain Signaling

Abstract

Most vertebrate cells display a considerable microheterogeneity in their plasma membranes, often termed microdomain structure. Some of these microdomains are enriched in glycosphingolipids and cholesterol and are resistant to solubilization with nonionic detergents; they are therefore called detergent-insoluble-glycolipid enriched membrane (DIG) or glycosphingolipid enriched membrane (GEM). These domains, also called “lipid rafts” (Simons and Ikonen, 1997), may form at the plasma membrane (PM) upon external stimuli or may be present in a preassembled form upon vesicular traffic to and fusion with the PM (Simons and Ikonen, 1997; Brown and Rose, 1992). We consider lipid rafts as transient molecular associations between lipid and protein components of the PM, providing a dynamic patchiness and local order in the fluid mosaic membrane (Edidin, 2001). Although the microdomain concept is widely accepted, and the existence of rafts has been confirmed by many lines of experimental evidence (e.g., biochemical data on detergent resistance, resolving membrane patchiness by high-resolution fluorescence and electron microscopies, tracking by videomicroscopy the lipid and protein motions in the membrane, etc.), some basic questions about the microdomains still remain open or highly controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed S. N., Brown D. A., and London E. (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10,944–10,953.

    Article  PubMed  CAS  Google Scholar 

  • Alonso M. A. and Millán J. (2001) The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114, 3957–3965.

    PubMed  CAS  Google Scholar 

  • Anderson R. G. W. and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts and other membrane domains. Science 296, 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E. B. and Draeger A. (2000) Annexins in cell membrane dynamics: Ca2+-regulated association of lipid microdomains. J. Cell Biol. 150, 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  • Berney C. and Danuser G. (2003) FRET or no FRET: a quantitative comparison. Biophys. J. 84, 3992–4010.

    PubMed  CAS  Google Scholar 

  • Blanchard N. and Hivroz C. (2002) The immunological synapse: The more you look the less you know ... Biol. Cell 94, 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Bock J. and Gulbins E. (2003) The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts. FEBS Lett. 534, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Bodnar A., Jene A., Bene L., Damjanovich S., and Matkó J. (1996) Modification of membrane cholesterol affects expression and clustering of class I HLA molecules at the surface of human JY B lymphoblasts. Immunol. Lett. 54, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Bolard J. (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864, 257–304.

    PubMed  CAS  Google Scholar 

  • Botelho R. J., Teruel M., Dierckman R., Anderson R., Wells A., York J. D., et al. (2000) Localized biphasic changes in phophatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1367.

    Article  PubMed  CAS  Google Scholar 

  • Brdicka T., Pavlistova D., Leo A., Bruyns E., Korinek V., Angelisova P., et al. (2000) Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604.

    Article  PubMed  CAS  Google Scholar 

  • Bromley S. K., Burack W. R., Johnson K. G., Somersalo K., Sims T. N., Sumen C., et al. (2001) The immunological synapse. Annu. Rev. Immunol. 19, 375–396.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A. and Rose J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. A. and London D. E. (1998) Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Burack W. R., Lee K. H., Holdorf A. D., Dustin M. L., and Shaw A. S. (2002) Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J. Immunol. 169, 2837–2841.

    PubMed  CAS  Google Scholar 

  • Cremestli A., Paris F., Grassme H., Holler N., Tschopp J., Fuks Z., et al. (2001) Ceramide enables Fas to cap and kill. J. Biol. Chem. 276, 23,954–23,961.

    Article  Google Scholar 

  • Damjanovich S., Vereb G., Schaper A., Jenei A., Matkó J., Starink J. P., et al. (1995) Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 92, 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  • Dietric C., Volovyk Z. N., Levi M., Thompson N. L., and Jacobson K. (2001) Partitioning of Thy-1, GM1 and crosslinked phospholipid analogs into lipid rafts reconstituted in supported model mebrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10,642–10,647.

    Article  Google Scholar 

  • Dietrich C., Yang B., Fujiwara T., Kusumi A., and Jacobson K. (2002) Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284.

    PubMed  CAS  Google Scholar 

  • Edidin M. (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends in Cell Biol. 11, 492–496.

    Article  CAS  Google Scholar 

  • Filatov A. V., Shmigo I. B., Sharonov G. V., Feofanov A. V., and Volkov Y. (2003) Direct and indirect antibody-induced TX-100 resistance of cell surface antigens. Immunol. Lett. 85, 287–295.

    Article  PubMed  CAS  Google Scholar 

  • Freiberg B. A., Kupfer H., Maslanik W., Delli J., Kappler J., Zaller D. M., et al. (2002) Staging and resetting T cell activation in SMACs. Nature Immunol. 3, 911–917.

    Article  CAS  Google Scholar 

  • Friedrichson T. and Kurzchalia T. V. (1998) Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394, 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Gaidarov I., Santini F., Warren R. A., and Keen J. H. (1999) Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Gheber L. A. and Edidin M. (1999) A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicular traffic. Biophys. J. 77, 3163–3175.

    PubMed  CAS  Google Scholar 

  • Gombos I., Detne C., Vámosi G., and Matkó J. (2004) Rafting MHC-II domains in the APC (presynaptic) membrane and the thresholds for T-cell activation and immunological synapse formation. Immunol. Lett. 92, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Harder T. (2003) Formation of functional cell membrane domains: the interplay of lipid-and protein-mediated interactions. Philos. Trans. Soc. Lond., B, Biol. Sci. 358, 863–868.

    Article  CAS  Google Scholar 

  • Harder T., Scheiffele P. Verkade P., and Simons K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.

    Article  PubMed  CAS  Google Scholar 

  • Hiltbold E. M., Poloso N. J., and Roche P. A. (2003) MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J. Immunol. 170, 1329–1338.

    PubMed  CAS  Google Scholar 

  • Hooper N. M. (1999) Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol. 16, 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Hwang J., Gheber L,. Margolis L., and Edidin M. (1998) Domains in cell plasma membranes investigated by Near-field Scanning Optical Microscopy. Biophys. J. 74, 2184–2190.

    PubMed  CAS  Google Scholar 

  • Ikonen E (2001) Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13, 471–477.

    Article  Google Scholar 

  • Ilangumaran S. and Hoessli D. C. (1998) Effect of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335, 433–440.

    PubMed  CAS  Google Scholar 

  • Ilangumaran S., Arni S., van Echten-Decker G., Borisch B., and Hoessli D. C. (1999) Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol. Biol. Cell 10, 891–905.

    PubMed  CAS  Google Scholar 

  • Jacobson K. and Dietrich C. (1999) Looking at lipid rafts? Trends Cell Biol. 9, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Jost P. C., Griffith O. H., Capaldi R. A., and Vanderkooi G. (1973) Evidence for boundary lipid in membranes. Proc. Natl. Acad. Sci. USA 70, 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Jost P. C. and Griffith O. H. (1980) The lipid-protein interface in biological membranes. Ann. NY Acad. Sci. 348, 391–407.

    Article  PubMed  CAS  Google Scholar 

  • Kabouridis P. D., Janzen J., Magee A. L., and Ley S. C. (2000) Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signal pathways in T lymphocytes. Eur. J. Immunol. 30, 954–963

    Article  PubMed  CAS  Google Scholar 

  • Kahya N., Scherfeld D., Bacia K., Poolman B., and Schwille P. (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278, 28,109–28,115.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K., Yin J. J., Subczynski W. K., Hyde J. S., and Kusumi A. (2001) Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and application to studies of influenza viral membrane. Biophys. J. 80, 738–748.

    PubMed  CAS  Google Scholar 

  • Kenworthy A. K. and Edidin M. (1998) Distribution of a glycosylphoshatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 using imaging fluorescence energy transfer. J. Cell Biol. 142, 69–84.

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy A. K., Petranova N., and Edidin M. (2000) High resolution FRET microscopy of cholera toxin B subunit and GPI proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655.

    PubMed  CAS  Google Scholar 

  • Kirchhausen T. (1999) Adaptors for clathrin-mediated traffic. Annu. Rev. Cell Dev. Biol. 15, 705–732.

    Article  PubMed  CAS  Google Scholar 

  • Korlach J., Schwille P., Webb W. W., and Feigenson G. (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 96, 8461–8466.

    Article  PubMed  CAS  Google Scholar 

  • Krummel M. F. and Davis M. M. (2002) Dynamics of the immunological synapse: finding, esteblishing and solidifying connections. Curr. Opin. Immunol. 14, 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Kusumi A. and Sako Y. (1996) Cell surface organization and the membrane skeleton. Curr. Opin. Cell Biol. 8, 566–574.

    Article  PubMed  CAS  Google Scholar 

  • Lanzavecchia A. and Sallusto F. (2001) Antigen decoding by T lymphocytes: from synapses to fate determination. Nature Immunol. 2, 487–92.

    Article  CAS  Google Scholar 

  • Lawrence J. C., Saslowsky D. E., Edwardson J. M., and Henderson R. M. (2003) Real time analysis of the effect of cholesterol on lipid raft behavior using atomic force microscopy. Biophys. J. 84, 1827–1832.

    PubMed  CAS  Google Scholar 

  • Lee S. J. E., Hori Y., Groves J. T., Dustin M. L., and Chakraborty A. K. (2002) The synapse assembly model. Trends Immunol. 23, 500–502.

    Article  PubMed  CAS  Google Scholar 

  • Lin J. and Weiss A. (2000) T cell receptor signaling. J. Cell Sci. 114, 243–244.

    Google Scholar 

  • London E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opin. Struct. Biol. 12, 480–486.

    Article  PubMed  CAS  Google Scholar 

  • Manes S., Mira E., Gomez-Mouton C., Lacalle R. A., Keller P., Labrador J. P., et al. (1999) Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 18, 6211–6220.

    Article  PubMed  CAS  Google Scholar 

  • Manes S., Lacalle R. A., Gomez-Mouton C., and Martinez C. A. (2003) From rafts to crafts: membrane asymmetry in moving cells. Trends Immunol. 24, 319–325.

    Article  CAS  Google Scholar 

  • Martin T. F. J. (2001) PI(4,5)P2 regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13, 493–499.

    Article  PubMed  CAS  Google Scholar 

  • Masserini M. and Ravasi D. (2001) Role of sphingolipids in the biogenesis of membrane domains. Biochim Biophys. Acta 1532, 149–161.

    PubMed  CAS  Google Scholar 

  • Matkó J. and Szöllősi J. (2002) Landing of immune receptors and signal proteins on lipid rafts: a safe way to be spatio-temporally coordinated? Immunol. Lett. 82, 3–15.

    Article  PubMed  Google Scholar 

  • Matkó J., Bodnar A., Vereb G., Bene L., Vamosi G., Szentesi G., et al. (2002) GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. Eur. J. Biochem. 269, 1199–1208.

    Article  PubMed  Google Scholar 

  • Millan J., Montoya M. C., Sancho D., Sanchez-Madrid F., and Alonso M. A. (2002) Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99, 978–984.

    Article  PubMed  CAS  Google Scholar 

  • Miller M. J., Wei S. H., Parker I. and Cahalan M. D. (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph nodes. Science 296, 1869–1873.

    Article  PubMed  CAS  Google Scholar 

  • Moran M. and Micelli C. (1998) Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation. Immunity 9, 787–796.

    Article  PubMed  CAS  Google Scholar 

  • Nichols B. J., Kenworthy A. K., Polishchuk R. S., Lodge R., Roberts T. H., Hirschberg K., et al. (2001) Rapid recycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153, 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Oliferenko S., Palha K., Harder T., Gerke V., Schwarzler C., Schwarz H., et al. (1999) Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by actin. J. Cell Biol. 146, 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Pralle A., Keller P., Florin E-L., Simons K., and Hörber J. K. H. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan A., Anderson T. G., and McConnell H. M. (2000) Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc. Natl. Acad. Sci. USA 97, 12,422–12,427.

    Article  PubMed  CAS  Google Scholar 

  • Rinia H. A., Snel M. M., van der Eerden J. P., and de Kruijff B. (2000) Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501, 92–96.

    Article  Google Scholar 

  • Rosenberger C. M., Brumell J. H., and Finlay B. B. (2000) Microbial pathogenesis: Lipid rafts as pathogen portals. Curr. Biol. 10, R823–R825.

    Article  PubMed  CAS  Google Scholar 

  • Rothberg K. G., Heuser J. E., Donzell W. C., Ying Y. S., Glenney J. R., and Anderson R. G. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Rozella A. L., Machesky L. M., Yamamoto M., Driessens M. H. E., Insall R. H., Roth M. G., et al. (2000) Phoshatidylinositol 4,5-bisphosphate induces actinbased movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10, 311–320.

    Article  Google Scholar 

  • Saslowsky D. E., Lawrence J., Ren X., Brown D. A., Henderson R. M., and Edwardson J. M. (2002) Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. J. Biol. Chem. 277, 26,966–26,970.

    Article  PubMed  CAS  Google Scholar 

  • Saxton M. J. and Jacobson K. (1997) Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Schmid S. L. (1997) Chlatrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder R., London E., and Brown D. A. (1994) Interaction between saturated acyl chains confer detergent resistance on lipids and GPI-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA 91, 12,130–12,134.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder R., Ahmed S. N., Shu Y. Z., London E., and Brown D. A. (1998) How cholesterol and sphingolipid enhance the TritonX-100 insolubility of GPI-anchored proteins by promoting formation of detergent insoluble ordered membrane domains. J. Biol. Chem. 273, 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  • Schutz G., Kada G., Pastushenko V. P., and Schindler H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Shakor A. B. A., Czurylo E. A., and Sobota A. (2003) Lysenin, a unique sphingomyelin-binding protein. FEBS Lett. 542, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Sheets E. D., Lee, G. M., Simson R., and Jacobson K. (1997) Transient confinement of a glycosyl-phosphatidyl-inositol-anchored protein in the plasma membrane. Biochemistry 36, 12,449–12,458.

    Article  PubMed  CAS  Google Scholar 

  • Shin J. S., Gao Z., and Abraham S. N. (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289, 785–788.

    Article  PubMed  CAS  Google Scholar 

  • Simons K. and Ikonen E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Smart E., Ying Y-S., Conrad P. A., and Anderson R. G. W. (1994) Caveolin moves from caveolae to Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197.

    Article  PubMed  CAS  Google Scholar 

  • Stevens V. L. and Tang J. (1997) Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidyl-inositol-anchored folate receptor. J. Biol. Chem. 272, 18,020–18,025.

    Article  PubMed  CAS  Google Scholar 

  • Stulnig T. M., Berger M., Sigmund T., Radederstoff D., Stockinger H., and Waldhaus W. (1998) Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. J. Cell Biol. 143, 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Subczynski W. K. and Kusumi A. (2003) Dynamics of rafts molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 1610, 231–243.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen J. W., van Veldhoven P. P., Timmermans L., De Schrijver E. D., Brusselmans K., Vanderhoydonc F., et al. (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane domains. Biochem. Biophys. Res. Commun. 302, 898–903.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M., Miyamoto H., Sako Y., Komizu H., and Kusumi A. (1998) Structure of erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys. J. 74, 2184–2190.

    Google Scholar 

  • Tang Q. and Edidin M. (2001) Vesicle trafficking and Cell surface membrane patchiness. Biophys. J. 81, 196–203.

    PubMed  CAS  Google Scholar 

  • Taraboulos A., Scott M., Semenov A., Avraham D., Laszlo L., and Prusiner S. B. (1995) Cholesterol depletion and modification of COOH terminal targeting sequence on the prion protein inhibit formation of the scraple isoform. J. Cell Biol. 129, 121–135.

    Article  PubMed  CAS  Google Scholar 

  • Trautmann A. and Valitutti S. (2003) The diversity of immunological synapses. Curr. Opin. Immunol. 15, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Tomishige M. and Kusumi A. (1999) Compartmentalization of the erythrocyte membrane by the membrane skeleton: intercompartmental hop diffusion of band 3. Mol. Biol. Cell 10, 2475–2479.

    PubMed  CAS  Google Scholar 

  • Tuosto L., Parolini I., Schroder S., Sargiacomo M., Lanzavecchia A., and Viola A. (2001) Organization of plasma membrane functional rafts upon T cell activation. Eur. J. Immunol. 31, 345–349.

    Article  PubMed  CAS  Google Scholar 

  • Valitutti S., Muller S., Cella M., Padovan E., and Lanzavecchia, A. (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151.

    Article  PubMed  CAS  Google Scholar 

  • van Blitterswijk W. J., van der Luit A. H., Veldman R. J., Verheij M., and Borst J. (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem. J. 369, 199–211.

    Article  PubMed  Google Scholar 

  • van Meer G. (2002) The different hues of lipid rafts. Science 296, 855–857.

    Article  PubMed  Google Scholar 

  • Varma R. and Mayor S. (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801.

    Article  PubMed  CAS  Google Scholar 

  • Vereb G., Matkó J., Vamosi G., Ibrahim S. M., Magyar E., Varga S., et al. (2000) Cholesterol-dependent clustering of IL-2Ralpha and its colocalization with HLA and CD48 on T lymphoma cells suggest their functional association with lipid rafts. Proc. Natl. Acad. Sci. USA 97, 6013–6018.

    Article  PubMed  CAS  Google Scholar 

  • Viola A. (2001) Amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol. 22, 322–327.

    Article  PubMed  CAS  Google Scholar 

  • Xavier R., Brenna T., Li Q., McCormack C., and Seed B. (1998) Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Xu X. and London E. (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849.

    Article  PubMed  CAS  Google Scholar 

  • Yuan C. and Johnston L. J. (2001) Atomic force microscopy studies of ganglioside GM1 domains phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys. J. 81, 1059–1069.

    Article  PubMed  CAS  Google Scholar 

  • Yuan C., Furlong J., Burgos P., and Johnston L. J. (2002) The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J. 82, 2526–2535.

    PubMed  CAS  Google Scholar 

  • Zacharias D. A., Violin J. D., Newton A. C., and Tsien R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane domains of live cells. Science 296, 913–916.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Matkó, J., Szöllősi, J. (2005). Regulatory Aspects of Membrane Microdomain (Raft) Dynamics in Live Cells. In: Mattson, M.P. (eds) Membrane Microdomain Signaling. Humana Press. https://doi.org/10.1385/1-59259-803-X:015

Download citation

Publish with us

Policies and ethics