Skip to main content

Hematopoietic Stem Cell Transplant in the Treatment of Autoimmune Endocrine Disease

  • Chapter
Stem Cells in Endocrinology

Part of the book series: Contemporary Endocrinology ((COE))

  • 503 Accesses

Abstract

The recent successful application of hematopoietic stem cell transplantation (HSCT) to the treatment of severe or refractory rheumatic autoimmune diseases has led to speculation of whether stem cell transplantation might benefit patients with endocrine autoimmune diseases. Autoimmune type 1 diabetes mellitus is a prime candidate for hematopoietic stem cell therapies because of both the severity of the disease and associated long-term complications of chronic hyperglycemia. HSCT in patients with recent-onset type 1 diabetes may prevent further autoimmune-mediated destruction of islet β cells and thus decrease acute and chronic risks of hyperglycemia. In patients with type 1 diabetes, however, pancreas or islet transplant is necessary to restore endogenous insulin production, and current protocols require the use of chronic immunosuppressive therapies to control autoimmunity and prevent allograft rejection. HSCT may overcome limitations associated with pancreas and islet transplant by inducing immunologic tolerance to islet β cells. Nevertheless, autologous HSCT is associated with autoimmune disease relapse, and correction of genetic susceptibility to the development of type 1 diabetes would require allogeneic HSCT with human leukocyte antigen (HLA)-DQ or DR (HLA class II) mismatched donors, which leads to a high risk of acute graft versus host disease. In this chapter, we examine both the potential therapeutic benefits and risks of HSCT for treatment of autoimmune type 1 diabetes mellitus as a model for HSCT in the treatment of endocrine autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrier E, Burt R. Stem cell transplantation for autoimmune diseases: pros and cons. Current Opinion in Organ Transplantation 2000;5:343–351.

    Article  Google Scholar 

  2. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today 1993;14:426–430.

    Article  PubMed  CAS  Google Scholar 

  3. Burt RK, Slavin S, Burns WH, Marmont AM. Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure? Int J Hematol 2002;76(Suppl. 1):226–247.

    Article  PubMed  Google Scholar 

  4. Carrier E, Burt RK. Mobilization and conditioning regimens in stem cell transplant for autoimmune disease. In: Burt RK, Marmont A, eds. Stem Cell Therapy for Autoimmune Disease. Landes Bioscience, Georgetown, TX, 2004, pp. 253–261.

    Google Scholar 

  5. Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M. Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes 2004;53:376–383.

    Article  PubMed  CAS  Google Scholar 

  6. Wang B, Yamamoto Y, El-Badri NS, Good RA. Effective treatment of autoimmune disease and progressive renal disease by mixed bone-marrow transplantation that establishes a stable mixed chimerism in BXSB recipient mice. Proc Natl Acad Sci USA 1999;96:3012–3016.

    Article  PubMed  CAS  Google Scholar 

  7. Nash RA, Storb R. Graft-versus-host effect after allogeneic hematopoietic stem cell transplantation: GVHD and GVL. Curr Opin Immunol 1996;8:674–680.

    Article  PubMed  CAS  Google Scholar 

  8. Slavin S. Graft-versus-host disease, the graft-versus-leukemia effect, and mixed chimerism following nonmyeloablative stem cell transplantation Int J Hematol 2003;78:195–207.

    Article  PubMed  Google Scholar 

  9. Hinterberger W, Hinterberger-Fischer M, Marmont A. Clinically demonstrable anti-autoimmunity mediated by allogeneic immune cells favorably affects outcome after stem cell transplantation in human autoimmune diseases. Bone Marrow Transplant 2002;30:753–759.

    Article  PubMed  CAS  Google Scholar 

  10. Van Laar JM, Tyndall A. Intense immunosuppression and stem-cell transplantation for patients with severe rheumatic autoimmune disease: a review Cancer Control 2003;10:57–65.

    PubMed  Google Scholar 

  11. Tait KF, Gough SC. The genetics of autoimmune endocrine disease. Clin Endocrinol (Oxf) 2003;59: 1–11.

    Article  CAS  Google Scholar 

  12. Hawkes CH. Twin studies in medicine—what do they tell us? QJM 1997;90:311–321.

    Article  PubMed  CAS  Google Scholar 

  13. Zuklys S, Balciunaite G, Agarwal A, Fasler-Kan E, Palmer E, Holländer GA. Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). J Immunol 2000;165:1976–1983.

    PubMed  CAS  Google Scholar 

  14. Meyerson J, Lechuga-Gomez EE, Bigazzi PE, Walfish PG. Polyglandular autoimmune syndrome: current concepts. Can Med Assoc J 1988;138:605–612.

    CAS  Google Scholar 

  15. National Institute of Diabetes and Digestive and Kidney Diseases. National Diabetes Statistics fact sheet: general information and national estimates on diabetes in the United States, 2003. Bethesda, MD, U.S. Department of Health and Human Services, National Institutes of Health, 2003.

    Google Scholar 

  16. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insul-independent diabetes mellitus. N Engl J Med 1993; 329:977–986.

    Article  Google Scholar 

  17. The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the diabetes control and complications trial. Diabetes 1997;46:271–286.

    Article  Google Scholar 

  18. Sheehy MJ. HLA and insulin-dependent diabetes. A protective perspective. Diabetes 2001;41: 123–129.

    Article  Google Scholar 

  19. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry Nat Med 1998;4:781–785.

    Article  PubMed  CAS  Google Scholar 

  20. Oldstone MBA. Molecular mimicry and immune-mediated diseases. FASEB J 1998;12:1255–1265.

    PubMed  CAS  Google Scholar 

  21. Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med 1999;341:2068–2074.

    Article  PubMed  CAS  Google Scholar 

  22. Goodnow CC. Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 1996;93:2264–2271.

    Article  PubMed  CAS  Google Scholar 

  23. André I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci USA 1996;93:2260–2263.

    Article  PubMed  Google Scholar 

  24. Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 2002;346:1685–1691.

    Article  Google Scholar 

  25. LaFace DM, Peck AB. Reciprocal allogeneic bone marrow transplantation between NOD mice and diabetes-nonsusceptible mice associated with transfer and prevention of autoimmune diabetes. Diabetes 1989; 38: 894–901.

    Article  PubMed  CAS  Google Scholar 

  26. Lampeter EF. Homberg M, Gries FA, Kolb H, Quabeck K, Schaefer UW, P. Wernet P, Grosse-Wilde H, Bertrams J. Transfer of insulin-dependent diabetes between HLA-identical siblings by bone marrow transplantation. Lancet 1993;341:1243–1244.

    Article  PubMed  CAS  Google Scholar 

  27. Foulis AK, Liddle CN, Farwuharson MA, Richmond JA, Weir RS. The histopathology of the pancreas in Type 1 diabetes (insulin dependent) mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 1986;29:267–274.

    Article  PubMed  CAS  Google Scholar 

  28. The Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the Diabetes Control and Complications Trial: a randomized, controlled trial. Ann Intern Med 1998;128:517–523.

    Google Scholar 

  29. Goday A, Pujol-Borrell R, Fernandez J, et al. Effects of a short prednisone regime at clinical onset of type 1 diabetes. Diabetes Res Clin Pract 1993;20:39–46.

    Article  PubMed  CAS  Google Scholar 

  30. Eisenbarth GS, Srikanta S, Jackson R, et al. Anti-thymocyte globulin and prednisone immunotherapy of recent onset type 1 diabetes mellitus Diabetes Res 1985;2:271–276.

    PubMed  CAS  Google Scholar 

  31. Silverstein J, Maclaren N, Riley W, Spillar R, Radjenovic D, Johnson S. Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med 1988;319:599–604.

    Article  PubMed  CAS  Google Scholar 

  32. Bougneres PF, Carel JC, Castano L, et al. Factors associated with remission of type 1 diabetes in children treated with cyclosporine. N Engl J Med 1988;318:663–670.

    Article  PubMed  CAS  Google Scholar 

  33. Martin S, Schernthaner G, Nerup J, et al. Follow-up of cyclosporine A treatment in type 1 (insulin-dependent) diabetes mellitus: lack of long-term effects. Diabetologia 1991;34:429–434.

    Article  PubMed  CAS  Google Scholar 

  34. Delaunay F, Khan A, Cintra A, et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest 1997;100:2094–2098.

    Article  PubMed  CAS  Google Scholar 

  35. Krentz AJ, Dousset B, Mayer D, et al. Metabolic effects of cyclosporin A and FK 506 in liver transplant recipients. Diabetes 1993;42:1753–1759.

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen JH, Mandrup-Poulsen T, Nerup J. Direct effects of cyclosporin A on human pancreatic β-cells. Diabetes 1986;35:1049–1052.

    Article  PubMed  CAS  Google Scholar 

  37. Dufer M, Krippeit-Drews P, Lembert N, Idahl LA, Drews G. Diabetogenic effect of cyclosporin A is mediated by interference with mitochondrial function of pancreatic B-cells. Mol Pharmacol 2001;60:873–879.

    PubMed  CAS  Google Scholar 

  38. Gunnarsson R, Klintmalm G, Lundgren G, et al. Deterioration in glucose metabolism in pancreatic transplant recipients after conversion from azathioprine to cyclosporine Transplant Proc 1984;16:709–712.

    PubMed  CAS  Google Scholar 

  39. Kaprio J, Tuomilehto J, Koshenvuo M, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland Diabetologia 1993;35:1060–1067.

    Article  Google Scholar 

  40. Kumar D, Gemayel NS, Deapen D, et al. Genetic, etiological, and clinical significance of disease concordance according to age, zygosity, and the interval after diagnosis in first twin. Diabetes 1993;42:1351–1363.

    Article  PubMed  CAS  Google Scholar 

  41. Verge CF, Gianani R, Yu L, et al. Late progression to diabetes, evidence for chronic beta cell autoimmunity in identical twins of patients with type I diabetes. Diabetes 1995;44:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  42. Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ 1995;311:913–917.

    PubMed  CAS  Google Scholar 

  43. Niethammer D, Kümmerle-Deschner J, Dannecker GE. Side-effects of long-term immunosuppression versus morbidity in autologous stem cell rescue: striking the balance. Rheumatology 1999;38:747–750.

    Article  PubMed  CAS  Google Scholar 

  44. Lucarelli G, Galimberti M, Giardini C, et al. Bone marrow transplantation in thalassemia. The experience of Pesaro. Ann NY Acad Sci 1998;850:270–275.

    Article  PubMed  CAS  Google Scholar 

  45. Slover RH, Eisenbarth GS. Prevention of type 1 diabetes and recurrent β cell destruction of transplanted islets. Endocrine Rev 1997;18:241–258.

    Article  CAS  Google Scholar 

  46. Petersdorf EW, Longton GM, Anasetti C, et al. Definition of HLA-DQ as a transplantation antigen. Proc Nat Acad Sci 1996;93:15358–15363.

    Article  PubMed  CAS  Google Scholar 

  47. Kanda Y, Chiba S, Hirai H, et al. Allogeneic hematopoietic stem cell transplantation from family members other than HLA-identical siblings over the last decade (1991–2000). Blood 2003;102:1541–1547.

    Article  PubMed  CAS  Google Scholar 

  48. Mimura T, Funatsu H, Uchigata Y, et al. Relationship between human leukocyte antigen status and proliferative diabetic retinopathy in patients with younger-onset type 1 diabetes mellitus. Am J Ophthalmol 2003;135: 844–848.

    Article  PubMed  CAS  Google Scholar 

  49. Yang B, Cross DF, Ollerenshaw M, Millward BA, Demaine AG. Polymorphisms of the vascular endothelial growth factor and susceptibility to diabetic microvascular complications in patients with type 1 diabetes mellitus. J Diabetes Complications 2003;17:1–6.

    Article  PubMed  Google Scholar 

  50. Tarnow L, Stehouwer CD, Emeis JJ, et al. Plasminogen activator inhibitor-1 and apolipoprotein E gene polymorphisms and diabetic angiopathy. Nephrol Dial Transplant 2000;15:625–630.

    Article  PubMed  CAS  Google Scholar 

  51. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA. Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 2004;53:91–98.

    Article  PubMed  CAS  Google Scholar 

  52. Brand SJ, Tagerud S, Lambert P, et al. Pharmacological treatment of chronic diabetes by stimulating pancreatic beta-cell regeneration with systemic co-administration of EGF and gastrin. Pharmacol Toxicol 2002;91: 414–420.

    Article  PubMed  CAS  Google Scholar 

  53. Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M. Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes 2004;53:376–383.

    Article  PubMed  CAS  Google Scholar 

  54. Domenick MA, Ildstad ST. Impact of bone marrow transplantation on type 1 diabetes. World J Surg 2001; 25:474–480.

    Article  PubMed  CAS  Google Scholar 

  55. Remuzzi G, Ruggenenti P, Mauer SM. Pancreas and kidney/pancreas transplants: experimental medicine or real improvement? Lancet 1994;343:27–31.

    Article  PubMed  CAS  Google Scholar 

  56. Brendel MD, Hering BJ, Schulz AO, Bretzel RG. Int Islet Transpl Reg ITR Newsletter 1999;9:1–20.

    Google Scholar 

  57. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000;343:230–238.

    Article  PubMed  CAS  Google Scholar 

  58. Immune Tolerance Network. Preliminary results of ITN Multicenter Islet Transplant Trial confirm potential patient benefits, underscore steep learning curve. Available online at http://www.immunetolerance.org/news/articles/itn_news/article_255.html. Accessed March 10, 2004.

  59. Ryan EA, Lakey JRT, Paty1 BW, et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 2002;51:2148–2157.

    Article  PubMed  CAS  Google Scholar 

  60. Shapiro J. Eighty years after insulin: parallels with modern islet transplantation Can Med Assoc J 2002; 167:1398–1400.

    Google Scholar 

  61. Shapiro AM, Geng Hao E, Lakey JR, Finegood DT, Rajotte RV, Kneteman NM. Diabetes mellitus and islet cell specific autoimmunity as adverse effects of immunosuppressive therapy by FK506/tacrolimus. Exp Clin Endocrinol Diabetes 2000;108:347–352.

    Article  Google Scholar 

  62. Paty BW, Ryan EA, Shapiro JAM, Lakey JR, Robertson RP. Intrahepatic islet transplantation in type 1 diabetic patients does not restore hypoglycemic hormonal counterregulation or symptom recognition after insulin independence. Diabetes 2002;51:3428–3434.

    Article  PubMed  CAS  Google Scholar 

  63. Dosch H, Cheung RK, Karges W, Pietropaolo M, Becker DJ. Persistent T cell anergy in human type 1 diabetes. J Immunol 1999;163:6933–6940.

    PubMed  CAS  Google Scholar 

  64. Tydén G, Reinholt FP, Sundkvist G, Bolinde J. Recurrence of autoimmune diabetes mellitus in recipients of cadaveric pancreatic grafts. N Engl J Med 1996;335:860–863.

    Article  PubMed  Google Scholar 

  65. Esmatjes E, Rodriguez-Villar C, Ricart MJ, et al. Recurrence of immunological markers for type 1 (insulin-dependent) diabetes mellitus in immunosuppressed patients after pancreas transplantation. Transplantation 1998;66:128–131.

    Article  PubMed  CAS  Google Scholar 

  66. Sutherland DER, Goetz FC, Sibley RK. Recurrence of disease in pancreas transplants. Diabetes 1989; 38(Suppl. 1):85–87.

    PubMed  Google Scholar 

  67. Makhlouf L, Kishimoto K, Smith RN, et al. The role of autoimmunity in islet allograft destruction: major histocompatibility complex class II matching is necessary for autoimmune destruction of allogeneic islet transplants after T-cell costimulatory blockade. Diabetes 2002;11:3202–3210.

    Article  Google Scholar 

  68. Rifle G, Mousson C. Donor-derived hematopoietic cells in organ transplantation: a major step toward allograft tolerance? Transplantation 2003;75(9 Suppl.):3S–7S.

    Article  PubMed  Google Scholar 

  69. De Pauw L, Toungouz M, Goldman M. Infusion of donor-derived hematopoietic stem cells in organ transplantation: clinical data. Transplantation 2003;75(9 Suppl.):46S–49S.

    Article  PubMed  Google Scholar 

  70. Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 1999;68:480–484.

    Article  PubMed  CAS  Google Scholar 

  71. Mathew JM, Garcia-Morales RO, Carreno M, et al. Immune responses and their regulation by donor bone marrow cells in clinical organ transplantation. Transplant Immunol 2003;11:307–321.

    Article  CAS  Google Scholar 

  72. Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 2000;6:278–282.

    Article  PubMed  CAS  Google Scholar 

  73. Bonner-Weir S, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000;97:7999–8004.

    Article  PubMed  CAS  Google Scholar 

  74. Rosenthal N. Prometheus’s vulture and the stem-cell promise. N Engl J Med 2003;349: 267–274.

    Article  PubMed  Google Scholar 

  75. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001;17:435–462.

    Article  PubMed  CAS  Google Scholar 

  76. Sipione S, Eshpeter A, Lyon JG, Korbutt GS, Bleackley RC. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 2004;47:499–508.

    Article  PubMed  CAS  Google Scholar 

  77. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets [erratum, Science 2001;293:428]. Science 2001;292: 1389–1394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Schumacher, J., Carrier, E. (2005). Hematopoietic Stem Cell Transplant in the Treatment of Autoimmune Endocrine Disease. In: Lester, L.B. (eds) Stem Cells in Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1385/1-59259-900-1:221

Download citation

  • DOI: https://doi.org/10.1385/1-59259-900-1:221

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-407-4

  • Online ISBN: 978-1-59259-900-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics