Skip to main content

Biology of Spine Fusion

Biology and Clinical Applications

  • Chapter
Bone Regeneration and Repair

Abstract

Spinal fusion was first reported in the United States in 1911 by Hibbs and Albee for the treatment of scoliosis and tuberculosis (1,2). Since that time, the indications for spinal arthrodesis have continued to increase, and, in the late 1990s, approx 250,000 spinal fusions were performed each year in the United States (3,4). The rate of nonunion after spinal arthrodesis is reported to range from 5% to 35% (5). Better biomechanical control of the fusion environment with instrumentation and the use of autologous bone grafting techniques have failed to eliminate the problem of pseudoarthrosis in spine surgery (612). As spinal surgery enters the new millennium, attention is focused on the biology of spine fusion to further enhance the rate of successful arthrodesis (13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albee, F. H. (1911) Transplantation of a portion of the tibia into the spine for pott’s disease. JAMA 57, 885–886.

    Google Scholar 

  2. Hibbs, R. A. (1911) An operation for progressive spinal deformities. A preliminary report of three cases from the service of the orthopaedic hospital. N. Y. State J. Med. 93, 1013–1016.

    Google Scholar 

  3. Sandhu, H. S., Grewal, H. S., and Parvataneni, H. (1999) Bone grafting for spinal fusion. Orthop. Clin. N. Am. 30, 685–698.

    Article  CAS  Google Scholar 

  4. Katz, J. N. (1995) Lumbar spinal fusion, surgical rates, costs, and complications. Spine 20, 78s–83s.

    Article  PubMed  CAS  Google Scholar 

  5. Steinmann, J. C. and Herkowitz, H. N. (1992) Pseudarthrosis of the spine. Clin. Orthop. 284, 80–90.

    PubMed  Google Scholar 

  6. Yuan, H. A., Garfin, S., and Dickman, C. (1994) A historical cohort study of pedicle screw fixation in thoracic, lumbar and sacral spinal fusions. Spine 19(Suppl 20), 2279s–2296s.

    PubMed  CAS  Google Scholar 

  7. Zdeblick, T. A. (1993) A prospective, randomized study of lumbar fusion: preliminary results. Spine 18, 983–991.

    PubMed  CAS  Google Scholar 

  8. Fischgrund, J. S., Mackay, M., Herkowitz, H. N., et al. (1997) Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine 22, 2807–2812.

    Article  PubMed  CAS  Google Scholar 

  9. Thomsen, K., Christensen, F. B., Eiskjaer, S. P., Hansen, E. S., Fruensgaard, S., and Bunger, C. E. (1997) The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, Randomized clinical study. Spine 22, 2813–2822.

    Article  PubMed  CAS  Google Scholar 

  10. Bridwell, K. H., Sedgewick, T. A., O’Brien, M. F., Lenke, L. G., and Baldus, C. (1993) The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J. Spinal Disord. 6, 461–472.

    PubMed  CAS  Google Scholar 

  11. Mcguire, R. A. and Amundson, G. M. (1993) The use of primary internal fixation in spondylolisthesis. Spine 18, 1662–1672.

    Article  PubMed  CAS  Google Scholar 

  12. West, J. L. III, Bradford, D. S., and Ogilvie, J. W. (1991) Results of spinal arthrodesis with pedicle screw plate fixation. J. Bone Joint Surg. 73A, 1179–1184.

    Google Scholar 

  13. Boden, S. D. and Schimandle, J. H. (1995) Biologic enhancement of spinal fusion. Spine 20, 113S–123S.

    Article  PubMed  CAS  Google Scholar 

  14. Banwart, J. C., Asher, M. A., and Hassanein, R. S. (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20, 1055–1060.

    Article  PubMed  CAS  Google Scholar 

  15. Fernyhough, J. C., Schimandle, J. H., Weigel, M. C., Edwards, C. C., and Levine, A. M. (1992) Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion. Spine 17, 1474–1480.

    Article  PubMed  CAS  Google Scholar 

  16. Younger, E. M. and Chapman, M. W. (1989) Morbidity at bone graft donor sites. J. Orthop. Trauma 3, 192–195.

    Article  PubMed  CAS  Google Scholar 

  17. Mcafee, P. C., Regan, J. J., Farey, I. D., Gurr, K. R., and Warden, K. E. (1988) The biomechanical and histomorphometric properties of anterior lumbar fusions: a canine model. J. Spinal Disord. 1, 101–110.

    Article  PubMed  CAS  Google Scholar 

  18. Ludwig, S. C. and Boden, S. D. (1999) Osteoinductive bone graft substitutes for spinal fusion. Orthop. Clin. N. Am. 30, 635–645.

    Article  CAS  Google Scholar 

  19. Burchardt, H. (1987) Biology of bone transplantation. Orthop. Clin. N. Am. 18, 187–196.

    CAS  Google Scholar 

  20. Boden, S. D., Schimandle, J. H., Hutton, W. C., and Chen, M. I. (1995) 1995 Volvo award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part I: the biology of spinal fusion. Spine 20, 2626–2632.

    PubMed  CAS  Google Scholar 

  21. Toribatake, Y., Hutton, W. C., Boden, S. D., and Morone, M. A. (1998) Revascularization of the fusion mass in a posterolateral intertransverse process fusion. Spine 23, 1149–1154.

    Article  PubMed  CAS  Google Scholar 

  22. Schimandle, J. H. and Boden, S. D. (1994) The use of animal models to study spinal fusion. Spine 19, 1998–2006.

    PubMed  CAS  Google Scholar 

  23. Boden, S. D., Schimandle, J. H., and Hutton, W. C. (1995) An experimental lumbar intertransverse process spinal fusion model: radiographic, histologic, and biomechanical healing characteristics. Spine 20, 412–420.

    PubMed  CAS  Google Scholar 

  24. Silcox, D. H., Daftari, T., Boden, S. D., Schimandle, J. H., Hutton, W. C., and Whitesides, T. E. (1995) The effect of nicotine on spinal fusion. Spine 20, 1549–1553.

    PubMed  Google Scholar 

  25. Riebel, G. D., Boden, S. D., Whitesides, T. E., and Hutton, W. C. (1995) The effect of nicotine on incorporation of cancellous bone graft in an animal model. Spine 20, 2198–2202.

    Article  PubMed  CAS  Google Scholar 

  26. Keller, J., Bunger, C., Andreassen, T. T., Bak, B., and Lucht, U. (1987) Bone repair inhibited by indomethacin: effects on bone metabolism and strength of rabbit osteotomies. Acta Orthop. Scand. 58, 379–383.

    PubMed  CAS  Google Scholar 

  27. Ro, J., Sudmann, E., and Marton, P. F. (1976) Effect of indomethacin on fracture healing in rats. Acta Orthop. Scand. 47, 588–599.

    Google Scholar 

  28. Sudmann, E., Dregelid, E., Bessesen, A., and Morland, J. (1979) Inhibition of fracture healing by indomethacin in rats. Eur. J. Clin. Invest. 9, 333–339.

    Article  PubMed  CAS  Google Scholar 

  29. Tornkvist, H. and Lindholm, S. (1980) Effect of ibuprofen on mass and composition of fracture callus and bone. Scand. J. Rheumatol. 9, 167–171.

    PubMed  CAS  Google Scholar 

  30. Tornkvist, H., Lindholm, T. S., Netz, P., Stromberg, L., and Lindholm, T. C. (1984) Effect of ibuprofen and indomethacin on bone metabolism reflected in bone strength. Clin. Orthop. 187, 255–259.

    PubMed  Google Scholar 

  31. Tornkvist, H., Bauer, F. C. H., and Nilsson, O. S. (1985) Influence of indomethacin on experimental bone metabolism in rats. Clin. Orthop. 193, 264–270.

    PubMed  Google Scholar 

  32. Fairbank, J. C. T., Davies, J. B., Mbaot, J. C., and O’Brien, J. P. (1980) The oswestry low back pain disability questionnaire. Physiotherapy 66, 271–273.

    PubMed  CAS  Google Scholar 

  33. Morone, M. A., Boden, S. D., Martin, G., Hair, G., and Titus, L. (1998) Gene expression during autograft lumbar spine fusion and the effect of bone morphogenetic protein-2. Clin. Orthop. 351, 252–265.

    PubMed  Google Scholar 

  34. Peltier, L. (1959) The use of plaster of paris to fill large defects in bone. Am. J. Surg. 97, 311–315.

    Article  PubMed  CAS  Google Scholar 

  35. Tay, B., Patel, V., and Bradford, D. (1999) Calcium sulfate and calcium phosphate based bone substitutes. Orthop. Clin. N. Am. 30, 615–623.

    Article  CAS  Google Scholar 

  36. Sidqui, M., Collin, P., and Vitte, C. (1995) Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulfate hemihydrate. Biomaterials 16, 1327–1321.

    Article  PubMed  CAS  Google Scholar 

  37. Cunningham, B. W., Kotani, Y., McNulty, P. S., et al. (1998) Video-assisted thoracoscopic surgery versus open thoracotomy for anterior thoracic spinal fusion. A comparative radiographic, biomechanical, and histologic analysis in a sheep model. Spine 23, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  38. White, E. and Shors E. C. (1986) Biomaterial aspects of interpore-200 porous hydroxyapatite. Dent. Clin. N. Am. 30, 250–256.

    Google Scholar 

  39. Cornell, C. N. (1999) Osteoconductive materials as substitutes for autogenous bone grafts. Orthop. Clin. N. Am. 30, 591–598.

    Article  CAS  Google Scholar 

  40. Holmes, R., Mooney, V., Bucholz, R., and Tencer, A. (1984) A coralline hydroxyapatite bone graft substitute. Clin. Orthop. 188, 252–262.

    PubMed  CAS  Google Scholar 

  41. Chapman, M. W., Bucholz, R., and Cornell, C. N. (1997) Treatment of acute fractures with a collagen-calcium phosphate graft material: a randomized clinical trail. J. Bone Joint Surg. 18A, 495–502.

    Google Scholar 

  42. Chiroff, R. T., White, E. W., Weber, J. N., and Roy, D. M. (1975) Tissue ingrowth of replamineform implants. J. Biomed. Res. Symp. 6, 29–45.

    Article  Google Scholar 

  43. Shors, E. C. (1999) Coralline bone graft substitutes. Orthop. Clin. N. Am. 30, 599–613.

    Article  CAS  Google Scholar 

  44. Begley, C. T., Doherty, M. J., and Mollan, R. A. (1995) Comparative study of the osteoinductive properties of bioceramic, coral and processed bone graft substitute. Biomaterials 16, 1181–1185.

    Article  PubMed  CAS  Google Scholar 

  45. Doherty, M. J., Schlag, G., and Schwartz, N. (1994) Biocompatibility of xenographic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts. Biomaterials 15, 601–608.

    Article  PubMed  CAS  Google Scholar 

  46. Flatley, T. J., Lynch, K. L., and Benson, M. (1983) Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Clin. Orthop. 179, 246–252.

    PubMed  Google Scholar 

  47. Holmes, R. E., Bucholz, R. W., and Mooney, V. (1986) Porous hydroxyapatite as a bone graft substitute in metaphyseal defects. J. Bone Joint Surg. 68A, 904–911.

    Google Scholar 

  48. Boden, S. D., Martin, G. J., Morone, M. A., Ugbo, J. L., Titus, L., and Hutton, W. C. (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 24, 320–327.

    Article  PubMed  CAS  Google Scholar 

  49. Boden, S. D., Schimandle, J. H., Hutton, W. C., et al. (1997) In vivo evaluation of a resorbable osteoinductive composite as a graft substitute for lumbar spinal fusion. J. Spinal Disord. 10, 1–11.

    Article  PubMed  CAS  Google Scholar 

  50. Jarcho, M. (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. 157, 259–278.

    PubMed  CAS  Google Scholar 

  51. Goldberg, V. M., Stevenson, S., and Shaffer, J. W. (1991) Biology of autografts and allografts, in Bone and Cartilage Allografts (Friedlaender, G. E. and Goldberg, V. M., eds.), American Academy of Orthopaedic Surgeons, Park Ridge, IL, pp. 3–12.

    Google Scholar 

  52. Kurashina, K., Kurita, H., and Hirano, M. (1997) In vivo study of of calcium phosphate cements: implantaiton if an alpha-tricalcium phosphate/dicalcium phosphatedibasic/tetracalcium phosphate monoxide cement paste. Biomaterials 18, 539–543.

    Article  PubMed  CAS  Google Scholar 

  53. Muschler, G. F., Lane, J. M., and Dawson, E. G. (1991) The biology of spinal fusion, in Spinal Fusion (Cotler, J. and Cotler, H., eds.), Springer-Verlag, New York, pp. 9–21.

    Google Scholar 

  54. Werntz, J., Lane, J. M., Piez, C., Seyedin, S., and Burstein, A. (1986) The repair of segmental bone defects with collagen and marrow. Trans. Orthop. Res. Soc. 32, 108.

    Google Scholar 

  55. Johnson, K. D., Frierson, K., and Keller, T. S. (1996) Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J. Orthop. Res. 14, 351–369.

    Article  PubMed  CAS  Google Scholar 

  56. Zerwekh, J. E., Kourosh, S., Scheinberg, R., et al. (1992) Fibrillar collagen-biphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J. Orthop. Res. 10, 562–572.

    Article  PubMed  CAS  Google Scholar 

  57. Dubuc, F. L. and Urist, M. R. (1967) The accessibility of the bone induction prinicple in surface-decalcified bone implants. Clin. Orthop. 55, 217–223.

    PubMed  CAS  Google Scholar 

  58. Urist, M. R. (1965) Bone: formation by autoinduction. Science 150, 893–899.

    Article  PubMed  CAS  Google Scholar 

  59. Morone, M. A. and Boden, S. D. (1998) Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. Spine 23, 159–167.

    Article  PubMed  CAS  Google Scholar 

  60. Cook, S. D., Dalton, J. E., Prewett, A. B., and Whitecloud, T. S. (1995) In vivo evaluation of demineralized bone matrix as a bone graft substitute for posterior spinal fusion. Spine 20, 877–886.

    PubMed  CAS  Google Scholar 

  61. Martin, G., Boden, S. D., Morone, M. A., and Titus, L. (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24, 637–645

    Article  PubMed  Google Scholar 

  62. Turner, C. H., Akhter, M. P., Raab, D. M., Kimmel, D. B., and Recker, R. R. (1991) A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone 12, 73–79.

    Article  PubMed  CAS  Google Scholar 

  63. Feighan, J. E., Davy, D., Prewett, A. B., and Stevenson, S. (1995) Induction of bone by a demineralized bone matrix gel: a study in a rat femoral defect model. J. Orthop. Res. 13, 881–891.

    Article  PubMed  CAS  Google Scholar 

  64. Lindholm, T. S., Ragni, P., and Lindholm, T. C. (1988) Response of bone marrow stroma cells to demineralized cortical bone matrix in experimental spinal fusion in rabbits. Clin. Orthop. 230, 296–302.

    PubMed  Google Scholar 

  65. Frenkel, S. R., Moskovitch, R., Spivak, J., Zhang, Z. H., and Prewett, A. B. (1993) Demineralized bone matrix. Enhancement of spinal fusion. Spine 18, 1634–1639.

    Article  PubMed  CAS  Google Scholar 

  66. Sassard, W. R., Eidman, D. K., and Gray, P. M. (1994) Analysis of spine fusion utilizing demineralized bone matrix. Orthop. Trans. 18, 886–887.

    Google Scholar 

  67. Lowery, G. L., Maxwell, K. M., Karasick, D., Block, J. E., and Russo, R. (1995) Comparison of autograft and composite grafts of demineralized bone matrix and autologous bone in posterolateral fusions: an interim report. Innov. Tech. Biol. Med. 16, 1–8.

    Google Scholar 

  68. Urist, M. R., Dowell, T. A., Hay, P. H., and Strates, B. S. (1968) Inductive substrates for bone formation. Clin. Orthop. 59, 59–96.

    PubMed  CAS  Google Scholar 

  69. Urist, M. R., Mikulski, A., and Lietze, A. (1979) Solubilized and insolubilized bone morphogenetic protein. Proc. Natl. Acad. Sci. USA 76, 1828–1832.

    Article  PubMed  CAS  Google Scholar 

  70. Boden, S. D., Schimandle, J. H., and Hutton, W. C. (1995) 1995 Volvo Award In Basic Sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. Part II: study of dose, carrier, and species. Spine 20, 2633–2644.

    Article  PubMed  CAS  Google Scholar 

  71. Boden, S. D., Schimandle, J. H., and Hutton, W. C. (1995) Lumbar intertransverse process spine arthrodesis using a bovine-derived osteoinductive bone protein. J. Bone Joint Surg. 77A, 1404–1417.

    Google Scholar 

  72. Wang, E. A., Rosen, V., D’Alessandro, J. S., et al. (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. USA 87, 2220–2224.

    Article  PubMed  CAS  Google Scholar 

  73. Sandhu, H. S., Kanim, L. E. A., Kabo, J. M., et al. (1995) Evaluation of rhbmp-2 with an OPLA carrier in a canine posterolateral (transverse process) spinal fusion model. Spine 20, 2669–2682.

    Article  PubMed  CAS  Google Scholar 

  74. Muschler, G. F., Hyodo, A., Manning, T., Kambic, H., and Easley, K. (1994) Evaluation of human bone morphogenetic protein 2 in a canine spinal fusion model. Clin. Orthop. 308, 229–240.

    PubMed  Google Scholar 

  75. Zdeblick, T. A., Ghanayem, A. J., Rapoff, A. J., et al. (1998) Cervical interbody fusion cages: an animal model with and without bone morphogenetic protein. Spine 23, 758–766.

    Article  PubMed  CAS  Google Scholar 

  76. Fischgrund, J. S., James, S. B., Chabot, M. C., et al. (1997) Augmentation of autograft using rhbmp-2 and different carrier media in the canine spine fusion model. J. Spinal Disord. 10, 467–472.

    Article  PubMed  CAS  Google Scholar 

  77. Holliger, E. H., Trawick, R. H., Boden, S. D., and Hutton, W. C. (1996) Morphology of the lumbar intertransverse process fusion mass in the rabbit model: a comparison between two bone graft materials—rhbmp-2 and autograft. J. Spinal Disord. 9, 125–128.

    Article  PubMed  CAS  Google Scholar 

  78. Boden, S. D., Martin, G. J., Horton, W. C., Truss, T. L., and Sandhu, H. S. (1998) Laparoscopic anterior spinal arthrodesis with Rhbmp-2 in a titanium interbody threaded cage. J. Spinal Disord. 11, 95–101.

    Article  PubMed  CAS  Google Scholar 

  79. Schimandle, J. H., Boden, S. D., and Hutton, W. C. (1995) Experimental spinal fusion with recombinant human bone morphogenetic protein-2 (Rhbmp-2). Spine 20, 1326–1337.

    Article  PubMed  CAS  Google Scholar 

  80. Boden, S. D., Moskovitz, P. A., Morone, M. A., and Toribitake, Y. (1996) Video-assisted lateral intertransverse process arthrodesis-validation of a new minimally invasive lumbar spinal fusion technique in the rabbit and nonhuman primate (rhesus) models. Spine 21, 2689–2697.

    Article  PubMed  CAS  Google Scholar 

  81. Hecht, B., Fischgrund, J., Herkowitz, H., Penman, L., Toth, J., and Shirkhoda, A. (1999) The use of recombinent humman bone morphogenic protein 2 (Rhbmp-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 24, 629–636.

    Article  PubMed  CAS  Google Scholar 

  82. Boden, S. D., Zdeblick, T. A., Sandhu, H. S., and Heim, S. E. (2000) The use of Rhbmp-2 in interbody fusion cages: definitive evidence of osteoinduction in humans. Spine 25, 376–381.

    Article  PubMed  CAS  Google Scholar 

  83. Cook, S. D., Baffes, G. C., Wolfe, M. W., Sampath, T. K., Rueger, D. C., and Whitecloud, T. S. (1994) The effect of recombinant human osteogenic protein-1 on healing of large segmental bone defects. J. Bone Joint Surg. 76A, 827–838.

    Google Scholar 

  84. Cook, S. D., Wolfe, M. W., Salkeld, S. L., and Rueger, D. C. (1995) Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J. Bone Joint Surg. 77A, 734–750.

    Google Scholar 

  85. Cook, S. D., Dalton, J. E., Tan, E. H., Whitecloud, T. S., and Rueger, D. C. (1994) In vivo evaluation of recombinant human osteogenic protein (Rhop-1) implants as a bone graft substitute for spinal fusions. Spine 19, 1655–1663.

    Article  PubMed  CAS  Google Scholar 

  86. Boden, S. D., Mccuaig, K., Hair, G., et al. (1996) Differential effects and glucocorticoid potentiation of bone morphogenetic protein action during rat osteoblast differentiation in vitro. Endocrinology 137, 3401–3407.

    Article  PubMed  CAS  Google Scholar 

  87. Bostrom, M., Saleh, K., and Einhorn, T. (1999) Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop. Clin. N. Am. 30, 647–658.

    Article  CAS  Google Scholar 

  88. Scaduto, A. and Lieberman, J. (1999) Gene therapy for osteoinduction. Orthop. Clin. N. Am. 30, 625–633.

    Article  CAS  Google Scholar 

  89. Boden, S. D., Liu, Y., Hair, G. A., et al. (1998) LMP-1, A LIM-domain protein, mediates BMP-6 effects on bone formation. Endocrinology 139, 5125–5134.

    Article  PubMed  CAS  Google Scholar 

  90. Boden, S. D., Titus, L., Hair, G., et al. (1998) 1998 Volvo Award In Basic Sciences: Lumbar spine fusion by local gene therapy with a Cdna encoding a novel osteoinductive protein (LMP-1). Spine 23, 2486–2492.

    Article  PubMed  CAS  Google Scholar 

  91. Viggeswarapu, M., Boden, S. D., Liu, Y., et al. (2001) Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J. Bone Joint Surg. 83A, 364–376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Craig Boatright, K., Boden, S.D. (2005). Biology of Spine Fusion. In: Lieberman, J.R., Friedlaender, G.E. (eds) Bone Regeneration and Repair. Humana Press. https://doi.org/10.1385/1-59259-863-3:225

Download citation

  • DOI: https://doi.org/10.1385/1-59259-863-3:225

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-847-9

  • Online ISBN: 978-1-59259-863-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics