Skip to main content

Research and Innovation

  • Chapter
  • First Online:
Designing for Life

Abstract

Thinking is the property of the human mind. Scientists engage in constructive thinking: they set up hypotheses and test them, and develop logical chains of arguments to decide which assumptions are facts and which are not. They also create new perspectives for searching out truths by designing more accurate concepts, which allow them to ask new types of questions concerning the states of affairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is an annoying difference in semantic fields and meanings between the English word ‘science’ and the respective words in other European languages, such as ‘Wissenschaft’, ‘vetenskap’, ‘ciencia’, ‘tiede’, etc. The latter refer to any form of reason applied in research. For example, such fields of learning as ‘literature’ and ‘history’ are forms of Wissenschaft, or vetenskap. However, they are not ‘sciences’. When discussing human research, this difference often causes difficulties. Therefore, in this context, ‘research’ is used as an equivalent term for the European words that describe all forms of investigative activities.

  2. 2.

    It is important to distinguish between general and product-specific HTI design ontologies. General design ontologies describe properties of HTI solutions that are common to all products. Product-specific ontologies concern properties typical to individual products. Only general ontologies are discussed here.

References

  • Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher-level cognition and its relation to visual attention. Human-Computer Interaction, 12, 439–462.

    Article  Google Scholar 

  • Anscombe, G. E. M. (1957). Intention. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Aristotle. (1984). (1.1–15.32) Categories. In J. Barnes (Ed.), Complete works of Aristotle (W. Ross, & J. Urmson, Trans.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Bahder, T. B. (2003). Relativity of GPS measurement. Physical Review D, 68, 1–18.

    Article  Google Scholar 

  • Bernal, J. D. (1969). Science in history. Harmondsworth: Penguin.

    Google Scholar 

  • Boven, W. R. (2009). Engineering ethics. London: Springer.

    Google Scholar 

  • Bowen, W. R. (2009). Engineering ethics: Outline of an aspirational approach. London: Springer.

    Google Scholar 

  • Bunge, M. (1959). Causality and modern science. New York: Dover.

    Google Scholar 

  • Bunge, M. (1967). Scientific research (Vols. I–II). New York: Springer.

    Google Scholar 

  • Bynum, T. (2010). The historical roots of information and computer ethics. In L. Floridi (Ed.), The Cambridge handbook of information and computer ethics (pp. 20–38). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Carroll, J. M. (1995). Scenario-based design: envisioning work and technology in system development. New York: John Wiley & Sons.

    Google Scholar 

  • Carroll, J. M. (1997). Human computer interaction: Psychology as science of design. Annual Review of Psychology, 48, 61–83.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B. (1990). Design problem-solving—A task-analysis. Ai Magazine, 11, 59–71.

    Google Scholar 

  • Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are ontologies, and why do we need them? Intelligent Systems and Their Applications, 14, 20–26.

    Article  Google Scholar 

  • Cockton, G. (2006). Designing worth is worth designing. In Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles (pp. 165–174).

    Google Scholar 

  • Cockton, G. (2013). Usability evaluation. In C. Ghaoui (Ed.), The Encyclopedia of Human-Computer Interaction (2nd ed.). Hershey, PA: Idea Group.

    Google Scholar 

  • Cooper, A., Reimann, R., & Cronin, D. (2007). About Face 3: The essentials of interaction design. Indianapolis, IN: Wiley.

    Google Scholar 

  • Cross, N. (1982). Designerly ways of knowing. Design Studies, 3, 221–227.

    Article  Google Scholar 

  • Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design Issues, 17, 49–55.

    Article  Google Scholar 

  • Cross, N. (2004). Expertise in design: An overview. Design Studies, 2, 427–441.

    Article  Google Scholar 

  • Cross, N., Naughton, J., & Walker, D. (1981). Design method and scientific method. Design Studies, 2, 195–201.

    Article  Google Scholar 

  • de Souza, C. S. (2005). The semiotic engineering of human-computer interaction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Derry, T. K., & Williams, T. I. (1960). A short history of technology. New York: Dover.

    Google Scholar 

  • Dieter, G. E., & Schmidt, L. C. (2009). Engineering design. Boston, MA: McGraw-Hill.

    Google Scholar 

  • Duncker, K. (1945). On problem-solving. Psychological Monographs, 58, 1–113.

    Article  Google Scholar 

  • Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94, 103–120.

    Article  Google Scholar 

  • Dym, C. L., & Brown, D. C. (2012). Engineering design: Representation and reasoning. New York: Cambridge University Press.

    Book  Google Scholar 

  • Eder, W. (1998). Design modelling—A design science approach (and why does industry not use it?). Journal of Engineering Design, 9, 355–371.

    Article  Google Scholar 

  • Eder, W., & Hosnedl, S. (2008). Design engineering. A manual for enhanced creativity. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Eimer, M., Nattkemper, D., Schröger, E., & Printz, W. (1996). Involuntary attention. In O. Neuman & A. F. Sanders (Eds.), Handbook of perception and action 3. Attention (pp. 155–184). London: Academic Press.

    Google Scholar 

  • Franken, R. (2002). Human motivation. Belmont, CA: Wadsworth.

    Google Scholar 

  • Frijda, N. H. (1986). The emotions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Frijda, N. H. (1988). The laws of emotion. American Psychologist, 43, 349–358.

    Article  PubMed  Google Scholar 

  • Galiz, W. O. (2002). The essential guide to user interface design. New York: Wiley.

    Google Scholar 

  • Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. AI Magazine, 11, 26–36.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Goldschmidt, G. (2003). The backtalk of self-generated sketches. Design Issues, 19, 72–88.

    Article  Google Scholar 

  • Griggs, L. (1995). The windows interface guidelines for software design. Redmond, WA: Microsoft Press.

    Google Scholar 

  • Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5, 199–220.

    Article  Google Scholar 

  • Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human Computer Studies, 43, 907–928.

    Article  Google Scholar 

  • Hall, A. S., Holowenko, A. R., & Laughlin, H. G. (1961). Theory and problems of machine design. New York: McGraw-Hill.

    Google Scholar 

  • Hempel, C. (1965). Aspects of scientific explanation. New York: Free Press.

    Google Scholar 

  • Hu, J., Chen, W., Bartneck, C., & Rauterberg, M. (2010). Transferring design knowledge: Challenges and opportunities. In X. Zhang, S. Zhong, Z. Pan, K. Wong, & R. Yun (Eds.), Entertainment for education, digital techniques and systems (pp. 165–172). Berlin: Springer.

    Chapter  Google Scholar 

  • Iivari, J. (2007). A paradigmatic analysis of information systems as a design science. Scandinavian Journal of Information Systems, 19(5), 39–64.

    Google Scholar 

  • Indulska, M., Recker, J., Rosemann, M., & Green, P. (2009). Business process modeling: Current issues and future challenges. In The 21st International Conference on Advanced Information Systems Engineering, 8–12 June, Amsterdam (pp. 501–514). Berlin: Springer.

    Google Scholar 

  • Karwowski, W. (2006). The discipline of ergonomics and human factors. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (pp. 3–31). Hoboken, NJ: Wiley.

    Google Scholar 

  • Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12, 391–438.

    Article  Google Scholar 

  • Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Lazarus, R. S., & Lazarus, B. N. (1994). Passion and reason: Making sense of our emotions. Oxford: Oxford University Press.

    Google Scholar 

  • Leikas, J., Saariluoma, P., Heinilä, J., & Ylikauppila, M. (2013). A methodological model for life-based design. International Review of Social Sciences and Humanities, 4(2), 118–136.

    Google Scholar 

  • Leppänen, M. (2006). An ontological framework and a methodological skeleton for method engineering. Jyväskylä: Jyväskylä University Press.

    Google Scholar 

  • Long, H. (2014). An empirical review of research methodologies and methods in creativity studies (2003–2012). Creativity Research Journal, 26, 427–438.

    Article  Google Scholar 

  • March, S. T., & Smith, G. F. (1995). Design and natural science research on informational technology. Decision Support Systems, 15, 251–266.

    Article  Google Scholar 

  • March, S. T., & Storey, V. C. (2008). Design science in information systems discipline: An introduction to the special issue on design science research. MIS Quarterly, 32, 725–730.

    Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Engelwood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Nielsen, J. (1993). Usability engineering. San Diego, CA: Academic Press.

    Google Scholar 

  • Nolan, V. (2003). Whatever happened to synectics? Creativity and Innovation Management, 12, 24–27.

    Article  Google Scholar 

  • Norman, D. (1986). Cognitive engineering. In D. Norman & S. Draper (Eds.), User-centered system design: New perspectives on human-computer interaction (pp. 31–60). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Norman, D. (2004). Emotional design: Why we love (or hate) everyday things. New York: Basic Books.

    Google Scholar 

  • Orlikowski, W. J. (1991). Duality of technology: Rethinking the concept of technology in organizations. Organization Science, 3, 398–427.

    Article  Google Scholar 

  • Orlikowski, W. J. (2000). Using technology and constituting structures: A practical lens for studying technology in organizations. Organization Science, 11,404–428.

    Google Scholar 

  • Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering design: A systematic approach. Berlin: Springer.

    Book  Google Scholar 

  • Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.

    Google Scholar 

  • Power, M., & Dalgleish, T. (1997). Cognition and emotion: From order to disorder. Hove: Psychology Press.

    Google Scholar 

  • Rauterberg, M. (2006). HCI as an engineering discipline: To be or not to be? African Journal of Information and Communication Technology, 2, 163–183.

    Google Scholar 

  • Roaf, R. (1960). A study of the mechanics of spinal injuries. Journal of Bone and Joint Surgery, British Volume, 42, 810–823.

    Google Scholar 

  • Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rosson, B., & Carroll, J. (2002). Usability engineering: Scenario-based development of human-computer interaction. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Saariluoma, P. (2005). Explanatory frameworks for interaction design. In A. Pirhonen, H. Isomäki, C. Roast, & P. Saariluoma (Eds.), Future interaction design (pp. 67–83). London: Springer.

    Chapter  Google Scholar 

  • Saariluoma, P., Hautamäki, A., Väyrynen, S., Pärttö, M., & Kannisto, E. (2011). Microinnovations among the paradigms of innovation research. Global Journal of Computer Science and Technology, 11, 12–23.

    Google Scholar 

  • Saariluoma, P., & Jokinen, J. P. (2014). Emotional dimensions of user experience: A user psychological analysis. International Journal of Human-Computer Interaction, 30, 303–320.

    Article  Google Scholar 

  • Saariluoma, P., & Leikas, J. (2010). Life-based design—An approach to design for life. Global Journal of Management and Business Research, 10, 17–23.

    Google Scholar 

  • Saariluoma, P., & Oulasvirta, A. (2010). User psychology: Re-assessing the boundaries of a discipline. Psychology, 1, 317–328.

    Article  Google Scholar 

  • Schneider, W., Dumais, S., & Shiffrin, R. (1984). Automatic and controlled processing and attention. In R. Parasuraman & D. Davies (Eds.), Varieties of attention. Orlando, FL: Academic Press.

    Google Scholar 

  • Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York: Basic Books.

    Google Scholar 

  • Schumpeter, J. (1939). Business cycles. New York: McGraw-Hill.

    Google Scholar 

  • Simon, H. A. (1969). The sciences of artificial. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sixsmith, A., & Gutman, G. M. (2013). Technologies for active aging. New York: Springer.

    Book  Google Scholar 

  • Skolimowski, H. (1966). The structure of thinking in technology. Technology and Culture, 7, 371–383.

    Article  Google Scholar 

  • Sowa, J. F. (2000). Ontology, metadata, and semiotics. In B. Ganter & G. W. Mineau (Eds.), Conceptual structures: Logical, linguistic, and computational issues (pp. 55–81). Berlin: Springer.

    Chapter  Google Scholar 

  • Standing, L., Conezio, J., & Harber, R. N. (1970). Perception and memory for pictures: Single trial learning of 2560 stimuli. Psychonomic Science, 19, 73–74.

    Article  Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

    Article  PubMed  Google Scholar 

  • Ulrich, K. T., & Eppinger, S. D. (2011). Product design and development. New York: McGraw-Hill.

    Google Scholar 

  • van der Heijden, A. H. C. (1992). Selective attention in vision. London: Routledge.

    Google Scholar 

  • van der Heijden, A. H. C. (1996). Visual attention. In O. Neuman & A. F. Sanders (Eds.), Handbook of perception and action 3. Attention. London: Academic Press.

    Google Scholar 

  • Venable, J. (2006). The role of theory and theorising in design science research. In Proceedings of the 1st International Conference on Design Science in Information Systems and Technology (DESRIST 2006) (pp. 1–18).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Saariluoma, P., Cañas, J.J., Leikas, J. (2016). Research and Innovation. In: Designing for Life. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-53047-9_7

Download citation

Publish with us

Policies and ethics