Skip to main content

Design Discourses

  • Chapter
  • First Online:
Designing for Life

Abstract

A newcomer in the human-technology interaction (HTI) field encounters a complex variety of interest groups and design discourses. Over the years, human interaction with artefacts has been studied from many different approaches, perspectives, concepts, and methodologies. Yet conceptual structuring of the field is much needed; traditional metascientific concepts such as paradigm, research programme, and discourse can help.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This type of engineering uses semantic differential-based methods to investigate people’s preferences for various products.

References

  • Abras, C., Maloney-Krichmar, D., & Preece, J. (2004). User-centered design. In W. S. Bainbridge (Ed.), Encyclopedia of human-computer interaction (pp. 445–456). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Alexander, C. (1977). A pattern language: Towns, buildings, construction. Oxford: Oxford University Press.

    Google Scholar 

  • Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program Lisp. Cognitive Science, 8, 87–129.

    Article  Google Scholar 

  • Annett, J. (2000). Theoretical and pragmatic influences on task analysis methods. In J. Schraagen, S. Chipman, & V. Shalin (Eds.), Cognitive task analysis (pp. 25–40). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Annett, J. (2004). Hierarchical task analysis. In D. Diaper & N. Stanton (Eds.), Handbook of cognitive task design (pp. 63–82). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Annett, J., & Duncan, K. D. (1967). Task analysis and training design. Report resumes. Hull: Hull University.

    Google Scholar 

  • Aykin, N., Quaet-Faslem, P., & Milewski, A. (2006). Cultural ergonomics. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (pp. 3–31). Hoboken, NJ: Wiley.

    Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbour, I. (1980). Paradigms in science and religion. In G. Gutting (Ed.), Paradigms and revolutions: Appraisals and applications of Thomas Kuhn’s philosophy of science (pp. 223–245). Notre Dame, IN: University of Notre Dame Press.

    Google Scholar 

  • Behrent, M. C. (2013). Foucault and technology. History and Technology, 29, 54–104.

    Article  Google Scholar 

  • Booch, G., Rumbauch, J., & Jacobson, I. (1999). The unified modelling language. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Bouma, H., Fozard, J. L., & van Bronswijk, J. E. M. H. (2009). Gerontechnology as a field of endeavour. Gerontechnology, 8, 68–75.

    Google Scholar 

  • Bowen, W. R. (2009). Engineering ethics: Outline of an aspirational approach. London: Springer.

    Google Scholar 

  • Bridger, R. S. (2009). Introduction to ergonomics. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Broadbent, D. (1958). Perception and communication. London: Pergamon Press.

    Book  Google Scholar 

  • Budd, T. (1991). Object-oriented programming. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Carroll, J. M. (Ed.). (2003). HCI models, theories, and frameworks: Toward a multidisciplinary science. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Charness, N. (2009). Ergonomics and aging: The role of interactions. In I. Graafmans, V. Taipale, & N. Charness (Eds.), Gerontechnology: Sustainable investment in future (pp. 62–73). Amsterdam: IOS Press.

    Google Scholar 

  • Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery: A taxonomy. Software, IEEE, 7, 13–17.

    Article  Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mounton.

    Google Scholar 

  • Ciavola, B., Ning, Y., & Gershenson, J. K. (2010). Empathic design for early-stage problem identification. In American Society of Mechanical Engineers 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 267–276).

    Google Scholar 

  • Cockton, G. (1987). Interaction ergonomics, control and separation: Open problems in user interface management. Information and Software Technology, 29, 176–191.

    Article  Google Scholar 

  • Cockton, G. (2004). Value-centred HCI. In Proceedings of the Third Nordic Conference on Human-Computer Interaction (pp. 149–160).

    Google Scholar 

  • Coursaris, C. K., & Bontis, N. (2012). A metareview of HCI literature: Citation impact and research productivity rankings. In SIGHCI 2012 Proceedings Paper 9.

    Google Scholar 

  • Covan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioural and Brain Sciences, 24, 87–185.

    Google Scholar 

  • Cross, N. (1982). Designerly ways of knowing. Design Studies, 3, 221–227.

    Article  Google Scholar 

  • Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design Issues, 17, 49–55.

    Article  Google Scholar 

  • Cross, N. (2004). Expertise in design: An overview. Design Studies, 2, 427–441.

    Article  Google Scholar 

  • Czaja, S. J., & Nair, S. N. (2006). Human factors engineering and systems design. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (pp. 32–49). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Deacon, T. (1997). The symbolic species: The co-evolution of language and the human brain. London: Penguin Press.

    Google Scholar 

  • Desmet, P., Overbeeke, K., & Tax, S. (2001). Designing products with added emotional value: Development and application of an approach for research through design. The Design Journal, 4, 32–47.

    Article  Google Scholar 

  • Di Stasi, L. L., Antolí, A., & Cañas, J. J. (2013). Evaluating mental workload while interacting with computer-generated artificial environments. Entertainment Computing, 4, 63–69.

    Article  Google Scholar 

  • Dijkstra, E. (1972). Notes on structured programming. In O. Dahl, E. Dijkstra, & C. Hoare (Eds.), Structured programming. London: Academic Press.

    Google Scholar 

  • Dix, A., Findlay, J., Abowd, G., & Beale, R. (1993). Human-computer interaction. New York: Prentice-Hall.

    Google Scholar 

  • Dym, C. L., & Brown, D. C. (2012). Engineering design: Representation and reasoning. New York: Cambridge University Press.

    Book  Google Scholar 

  • Elmasri, R., & Navathe, S. (2011). Database systems. Boston, MA: Pearson Education.

    Google Scholar 

  • Feyerabend, P. (1975). Against method. London: Verso.

    Google Scholar 

  • Forlizzi, J., & Battarbee, K. (2004). Understanding experience in interactive systems. In Proceedings of the 5th Conference on Designing Interactive Systems: Process, Practices, Methods, and Techniques (DIS 2004) (pp. 261–268).

    Google Scholar 

  • Foucault, M. (1972). The archaeology of knowledge and the discourse on language. New York: Pantheon Books.

    Google Scholar 

  • Galiz, W. O. (2002). The essential guide to user interface design. New York: Wiley.

    Google Scholar 

  • Gopher, D., & Donchin, E. (1986). Workload: An examination of the concept. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance: Cognitive processes and performance (pp. 1–46). Hoboken, NJ: Wiley.

    Google Scholar 

  • Habermas, J. (1973). Erkentniss und interesse [Knowledge and interests]. Frankfurth am Main: Surkamp.

    Google Scholar 

  • Habermas, J. (1981). Theorie des kommunikativen Handelns [Theory of communicative behavior] (Vols. 1–2). Frankfurt am Main: Suhrkamp.

    Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hassenzahl, M. (2011). Experience design. San Rafael, CA: Morgan & Claypool.

    Google Scholar 

  • Hassenzahl, M., & Tractinsky, N. (2006). User experience—A research agenda. Behaviour and Information Technology, 25, 91–97.

    Article  Google Scholar 

  • Helander, M., & Khalid, H. M. (2006). Affective and pleasurable design. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (pp. 543–572). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Hobbes, T. (1651/1950). Leviathan. New York: EP Dutton.

    Google Scholar 

  • International Organization for Standardization. (1998). ISO 9241-11: Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs): Part 11: Guidance on Usability.

    Google Scholar 

  • Jordan, P. W. (2000). Designing pleasurable products: An introduction to the new human factors. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Kaptelinin, V. (1996). Activity theory: Implications for human-computer interaction. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human-computer interaction (pp. 103–116). Cambridge, MA: MIT-Press.

    Google Scholar 

  • Karwowski, W. (2006). The discipline of ergonomics and human factors. In G. Salvendy (Ed.), Handbook of human factors and ergonomics (pp. 3–31). Hoboken, NJ: Wiley.

    Google Scholar 

  • Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12, 391–438.

    Article  Google Scholar 

  • Koivisto, K. (2011). Kaj Frank and the art of glass. In H. Matiskainen (Ed.), The art of glass—Kaj Frank 100 years (pp. 8–61). Saarijärvi: Design museo.

    Google Scholar 

  • Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuniavsky, M. (2003). Observing the user experience: A practitioner’s guide to user research. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Kuutti, K. (1996). Activity theory as a potential framework for human–computer interaction research. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human–computer interaction (pp. 17–44). Cambridge, MA: MIT Press.

    Google Scholar 

  • Lakatos, I. M. (1970). Falsification and the methodology of research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Laudan, L. (1977). Progress and its problems: Towards a theory of scientific growth. London: Routledge and Kegan Paul.

    Google Scholar 

  • Leikas, J. (2009). Life-based design—A holistic approach to designing human-technology interaction. Helsinki: Edita Prima Oy.

    Google Scholar 

  • Leonard, D., & Rayport, J. F. (1997). Spark innovation through empathic design. Harvard Business Review, 75, 102–115.

    PubMed  Google Scholar 

  • Lewis, M., & Jacobson, J. (2002). Game engines. Communications of the ACM, 45, 27–31.

    Google Scholar 

  • Mao, J., Vredenburg, K., Smith, P. W., & Carey, T. (2005). The state of user-centered design practice. Communications of the ACM, 4, 105–109.

    Article  Google Scholar 

  • Mattelmäki, T., & Battarbee, K. (2002). Empathy probes. In: T. Binder, J. Gregory and I. Wagner (Eds.), Proceedings of the 7th Biennial Participatory Design Conference 2002, June 23 - June 25, 2002, Malmø, Sweden. (pp. 266–271).

    Google Scholar 

  • Markopoulos, P., & Bekker, M. (2003). Interaction design and children. Interacting with Computers, 15, 141–149.

    Article  Google Scholar 

  • Marti, P., & Bannon, L. J. (2009). Exploring user-centred design in practice: Some caveats. Knowledge, Technology and Policy, 22, 7–15.

    Article  Google Scholar 

  • McCarthy, J., & Wright, P. (2004). Technology as experience. Interactions, 11, 42–43.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  PubMed  Google Scholar 

  • Monk, A. F. (2002) Fun, communication and dependability: Extending the concept of usability. In Faulkner, X, Finlay, J, and Detienne, F. (Eds)16th British-Human-Computer-Interact-Group Annual Conference/European-Usability-Professionals-Association London, England Sept. 02-06, 2002, p. 3–14.

    Google Scholar 

  • Nagamashi, M. (2011). Kansei/affective engineering and history of Kansei/ affective engineering in the world. In M. Nagamashi (Ed.), Kansei/affective engineering (pp. 1–30). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Nardi, B. A. (1996). Context and consciousness: Activity theory and human-computer interaction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Engelwood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Nielsen, J. (1993). Usability engineering. San Diego, CA: Academic Press.

    Google Scholar 

  • Nielsen, J., & Norman, D. (2014). Definition of user experience. Retrieved January 24, 2015, from http://www.nngroup.com/articles/definition-user-experience/

  • Niezen, G. (2012). Ontologies for interaction. Eindhoven: Eindhoven University Press.

    Google Scholar 

  • Norman, D. (2004). Emotional design: Why we love (or hate) everyday things. New York: Basic Books.

    Google Scholar 

  • Norman, D. A., & Draper, S. W. (Eds.). (1986). User centered system design; New perspectives on human-computer interaction. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Norman, D., Miller, J., & Henderson, A. (1995). What you see, some of what’s in the future, and how we go about doing it: HI at Apple Computer. In Conference Companion on Human Factors in Computing Systems (p. 155). ACM.

    Google Scholar 

  • Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.

    Google Scholar 

  • Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994). Human-computer interaction. Harlow: Addison-Wesley.

    Google Scholar 

  • Preece, J., Rogers, Y., & Sharp, H. (2004). Interaction design. New York: Wiley.

    Google Scholar 

  • Rauterberg, M. (2004). Positive effects of entertainment technology on human behaviour. In: R. Jacquart (Ed): Building the Information Society (pp. 51-58). Kluwer Academic press.

    Google Scholar 

  • Rauterberg, M. (2006). HCI as an engineering discipline: To be or not to be? African Journal of Information and Communication Technology, 2, 163–183.

    Google Scholar 

  • Rauterberg M. (2010). Emotions: The voice of the unconscious. In: H.S. Yang, R. Malaka, J. Hoshino, J.H. Han (eds.) Entertainment Computing - ICEC 2010 (Lecture Notes in Computer Science, vol. 6243, pp. 205–215), (c) IFIP International Federation for Information Processing, Heidelberg: Springer.

    Google Scholar 

  • Ross, A., & Chiasson, M. (2011). Habermas and information systems research: New directions. Information and Organization, 2, 123–141.

    Article  Google Scholar 

  • Saariluoma, P. (1984). Coding problem spaces in chess. In Commentationes Scientiarum Socialium (Vol. 23). Turku: Societas Scientiarum Fennica.

    Google Scholar 

  • Saariluoma, P. (1997). Foundational analysis: Presuppositions in experimental psychology. London: Routledge.

    Google Scholar 

  • Saariluoma, P. (2005). Explanatory frameworks for interaction design. In A. Pirhonen, H. Isomäki, C. Roast, & P. Saariluoma (Eds.), Future interaction design (pp. 67–83). London: Springer.

    Chapter  Google Scholar 

  • Saariluoma, P., & Jokinen, J. P. (2014). Emotional dimensions of user experience: A user psychological analysis. International Journal of Human-Computer Interaction, 30, 303–320.

    Article  Google Scholar 

  • Saariluoma, P., & Oulasvirta, A. (2010). User psychology: Re-assessing the boundaries of a discipline. Psychology, 1, 317–328.

    Article  Google Scholar 

  • Saarinen, E., & Saarinen, A. B. (1962). Eero Saarinen on his work. New Haven, CT: Yale University Press.

    Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Seligman, M. E. P., & Csikszentmihalyi, M. (2000). Positive psychology—An introduction. American Psychologist, 55, 5–14.

    Article  PubMed  Google Scholar 

  • Shneiderman, B., & Maes, P. (1997). Direct manipulation vs. interface agents. Interactions, 4, 42–61.

    Article  Google Scholar 

  • Shneiderman, B., & Plaisant, C. (2005). Designing user interfaces. Boston, MA: Pearson.

    Google Scholar 

  • Sikka, T. (2011). Technology, communication, and society: From Heidegger and Habermas to Feenberg. The Review of Communication, 11, 93–106.

    Article  Google Scholar 

  • Simon, H. A. (1969). The sciences of artificial. Cambridge, MA: MIT Press.

    Google Scholar 

  • Stahl, B. C. (2006). Emancipation in cross-cultural IS research: The fine line between relativism and dictatorship of intellectual. Ethics and Information Technology, 8, 97–108.

    Article  Google Scholar 

  • Stahl, B. C. (2010). 6. Social issues in computer ethics. In L. Floridi (Ed.), The Cambridge handbook of information and computer ethics (pp. 101–115). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Trist, E. L. (1978). On socio-technical systems. Sociotechnical systems: A sourcebook. San Diego, CA: University Associates.

    Google Scholar 

  • Väänänen-Vainio-Mattila, K., Väätäjä, H., & Vainio, T. (2009). Opportunities and challenges of designing the service user eXperience (SUX) in web 2.0. In P. Saariluoma & H. Isomäki (Eds.), Future interaction design II (pp. 117–139). Berlin: Springer.

    Chapter  Google Scholar 

  • van Schomberg, R. (2013). A vision of responsible research and innovation. In R. Owen, M. Heintz, & J. Bessant (Eds.), Responsible innovation (pp. 51–74). Oxford: Wiley.

    Chapter  Google Scholar 

  • Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Weinberg, G. M. (1971). The psychology of computer programming. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Whitford, F., & Ter-Sarkissian, C. (1984). Bauhaus. London: Thames and Hudson.

    Google Scholar 

  • Wickens, C., & Holands, J. G. (2000). Engineering psychology and human performance. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Saariluoma, P., Cañas, J.J., Leikas, J. (2016). Design Discourses. In: Designing for Life. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-53047-9_2

Download citation

Publish with us

Policies and ethics