Skip to main content

Efficient Methods to Compute Long-Range Interactions for Soft Matter Systems

  • Chapter
  • First Online:
Advanced Computer Simulation Approaches for Soft Matter Sciences II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 185))

Abstract

An extensive introduction to the topic of how to compute long-range interactions efficiently is presented. First, the traditional Ewald sum for 3D Coulomb systems is reviewed, then the P3M method of Hockney and Eastwood is discussed in some detail, and alternative ways of dealing with the Coulomb sum are briefly mentioned. The best strategies to perform the sum under partially periodic boundary conditions are discussed, and two recently developed methods are presented, namely the MMM2D and ELC methods for two-dimensionally periodic boundary conditions, and the MMM1D method for systems with only one periodic coordinate. The dipolar Ewald sum is also reviewed. For some of the methods, error formulas are provided which enable the algorithm to be tuned at a predefined accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones RAL (2002) Soft condensed matter. Oxford University Press, Oxford

    Google Scholar 

  2. Holm C, Kékicheff P, Podgornik R (2001) NATO Science Series II: Mathematics, physics and chemistry, vol 46. Kluwer, Dordrecht

    Google Scholar 

  3. Arnold A, Mann BA, Limbach H-J, Holm Christian (2004) In: Kremer K, Macho V (eds) Forschung und wissenschaftliches Rechnen 2003, vol 63 of GWDG-Bericht. Gesellschaft für wissenschaftliche Datenverarbeitung mbh, Göttingen, Germany, p 43

    Google Scholar 

  4. Arnold A, Mann BA, Limbach H-J, Holm C. ESPResSo – An Extensible Simulation Package for Research on Soft Matter Systems. Comp Phys Comm (in press)

    Google Scholar 

  5. Ewald PP (1921) Ann Phys 64:253

    Google Scholar 

  6. Heyes DM (1981) J Chem Phys 74:1924

    Article  CAS  Google Scholar 

  7. de Leeuw SW, Perram JW, Smith ER (1980) Proc R Soc Lond A 373:27

    Google Scholar 

  8. de Leeuw SW, Perram JW, Smith ER (1980) Proc R Soc Lond A 373:57

    Google Scholar 

  9. Perram J, Petersen GH, de Leeuw S (1988) Mol Phys 65:875

    Article  CAS  Google Scholar 

  10. Deserno M, Holm C (1998) J Chem Phys 109:7678

    Article  CAS  Google Scholar 

  11. Lekner J (1991) Physica A 176:485

    Article  Google Scholar 

  12. Sperb R (1998) Mol Simulat 20:179

    CAS  Google Scholar 

  13. Sperb R (1999) Mol Simulat 22:199

    CAS  Google Scholar 

  14. Strebel R, Sperb R (2001) Mol Simulat 27:61

    CAS  Google Scholar 

  15. Arnold A (2004) PhD thesis, Johannes Gutenberg-University, Mainz

    Google Scholar 

  16. Barnes JE, Hut P (1986) Nature 324:446

    Article  Google Scholar 

  17. Greengard L, Rhoklin V (1987) J Comput Phys 73:325

    Article  Google Scholar 

  18. Esselink K (1995) Comput Phys Commun 87:375

    Article  CAS  Google Scholar 

  19. Sagui C, Darden T (2001) J Chem Phys

    Google Scholar 

  20. Tsukerman I (2004) IEEE Trans Magn 40:2158

    Article  Google Scholar 

  21. Maggs AC, Rosseto V (2002) Phys Rev Lett 88:196402

    Article  CAS  Google Scholar 

  22. Deserno M, Holm C (1998) J Chem Phys 109:7694

    Article  CAS  Google Scholar 

  23. Deserno M (2000) PhD thesis, Universität Mainz

    Google Scholar 

  24. Arnold A, Holm C (2002) Comput Phys Commun 148:327

    Article  CAS  Google Scholar 

  25. Arnold A, de Joannis J, Holm C (2002) J Chem Phys 117:2496

    Article  CAS  Google Scholar 

  26. de Joannis J, Arnold A, Holm C (2002) J Chem Phys 117:2503

    Article  CAS  Google Scholar 

  27. Attig N, Binder K, Grubmüller H, Kremer K (eds) (2004) Efficient methods for long-range interactions in periodic geometries plus one application. NIC series, vol 23. Research Centre Jülich

    Google Scholar 

  28. Frenkel D (2002) Science 296:65

    Article  CAS  Google Scholar 

  29. Allen MP, Tildesley DJ (1987) Computer simulation of liquids, 1st edn. Oxford Science, Oxford

    Google Scholar 

  30. Caillol J-M (1994) J Chem Phys 101:6080

    Article  CAS  Google Scholar 

  31. Boresch S, Steinhauser O (1997) Ber Bunsenges Phys Chem 101:1019

    CAS  Google Scholar 

  32. Smith ER (1988) Mol Phys 65:1089

    Article  CAS  Google Scholar 

  33. Berendsen HJC (1993) In: van Gunsteren WF, Weiner PK, Wilkinson AJ (eds) Computer simulation of biomolecular systems, vol 2. Escom, Leiden, p 161

    Google Scholar 

  34. Hünenberger PH (2000) J Chem Phys 113:10464

    Article  Google Scholar 

  35. Kolafa J, Perram JW (1992) Mol Simulat 9:351

    CAS  Google Scholar 

  36. Hummer G, Pratt LR, García AE (1998) J Phys Chem A 102:7885

    Article  CAS  Google Scholar 

  37. Sangster MJL, Dixon M (1976) Adv Phys 25:247

    Article  CAS  Google Scholar 

  38. Adams DJ, Dubey GS (1987) J Comput Phys 72:156

    Article  Google Scholar 

  39. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  40. Hockney RW, Eastwood JW (1988) Computer simulation using particles. IOP, London

    Google Scholar 

  41. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  42. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen L J Chem Phys 103:8577

    Google Scholar 

  43. Pollock EL, Glosli J (1996) Comput Phys Commun 95:93

    Article  CAS  Google Scholar 

  44. Limbach HJ (2001) PhD thesis, Johannes Gutenberg Universität, Mainz

    Google Scholar 

  45. Schoenberg IJ (1973) Cardinal Spline Interpolation. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  46. Petersen HG (1995) J Chem Phys 103:3668

    Article  CAS  Google Scholar 

  47. Greengard L (1988) The rapid evaluation of potential fields in particle systems. MIT Press, Cambridge, MA

    Google Scholar 

  48. Greengard L, Rokhlin V (1997) Acta Numerica 6:229

    Article  Google Scholar 

  49. Lekner J (1989) Physica A 157:826

    Article  CAS  Google Scholar 

  50. Smith ER (1981) Proc R Soc Lond A 375:475

    Article  CAS  Google Scholar 

  51. Mazars M (2001) J Chem Phys 115:2955

    Article  CAS  Google Scholar 

  52. Moreira AG, Netz RR (2001) Phys Rev Lett 87:078301

    Article  CAS  Google Scholar 

  53. Sperb R (1994) Mol Simulat 13:189

    Google Scholar 

  54. Strebel R (1999) Dissertation 13504, ETH, Zurich

    Google Scholar 

  55. Widmann AH, Adolf DB (1997) Comput Phys Commun 107:167

    Article  CAS  Google Scholar 

  56. Kawata M, Nagashima U (2001) Chem Phys Lett 340:165

    Article  CAS  Google Scholar 

  57. Mazars M (2002) J Chem Phys 117:3524

    Article  CAS  Google Scholar 

  58. Arnold A, Holm C (2002) Chem Phys Lett 354:324

    Article  CAS  Google Scholar 

  59. Shelley JC, Patey GN (1996) Mol Phys 88:385

    Article  CAS  Google Scholar 

  60. Spohr E J Chem Phys 107:6342

    Google Scholar 

  61. Yeh I-C, Berkowitz ML (1999) J Chem Phys 111:3155

    Article  CAS  Google Scholar 

  62. Mináry P, Tuckerman ME, Pihakari KA, Martyna GJ (2002) J Chem Phys 116:5351

    Article  CAS  Google Scholar 

  63. Arnold A (2001) Diploma thesis, Johannes Gutenberg-Universität

    Google Scholar 

  64. Deserno M, Holm C, May S (2000) Macromolecules 33:199

    Article  CAS  Google Scholar 

  65. Deserno M, Arnold A, Holm C (2003) Macromolecules 36:249

    Article  CAS  Google Scholar 

  66. Naji A, Arnold A, Holm C, Netz RR (2004) Europhys Lett 67:130

    CAS  Google Scholar 

  67. Porto M (2000) J Phys A 33:6211

    Article  Google Scholar 

  68. Langridge DJ, Hart JF, Crampin S (2001) Comput Phys Commun 134:78

    Article  CAS  Google Scholar 

  69. Arnold A, Holm C MMM1D: A method for calculating electrostatic interactions in 1D periodic geometries. Comp Phys Comm (in press)

    Google Scholar 

  70. Bródka A (2002) Chem Phys Lett 363:604

    Article  Google Scholar 

  71. Kawata M, Mikami M (2001) Chem Phys Lett 340:157

    Article  CAS  Google Scholar 

  72. Deserno M, Holm C, Kremer K (2001) Molecular dynamics simulations of the cylindrical cell model. Surfactant science series, vol 99. Marcel Dekker, New York, p 59

    Google Scholar 

  73. Deserno M, Holm C (2002) Mol Phys 100:2941

    Article  CAS  Google Scholar 

  74. Pasichnyk I, Dünweg B (2004) J Phys Condens Mat 16:3999

    Google Scholar 

  75. Rottler J, Maggs AC (2004) Phys Rev Lett 93:170201

    Article  CAS  Google Scholar 

  76. Wilson KG (1974) Phys Rev D 10:2445

    Article  CAS  Google Scholar 

  77. Car R, Parrinello M Phys Rev Lett 55:2471

    Google Scholar 

  78. Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  79. Wang ZW, Holm C (2001) J Chem Phys 115:6277

    Article  CAS  Google Scholar 

  80. Bródka A (2004) Chem Phys Lett 400:62

    Article  CAS  Google Scholar 

  81. Toukmaji A, Sagui C, Board J, Darden T J Chem Phys 113:10913

    Google Scholar 

  82. Tcl/Tk homepage (2003) http://tcl.activestate.com/

  83. LAM/MPI homepage (2004) http://www.lam-mpi.org/

  84. MPICH homepage (2004) http://www-unix.mcs.anl.gov/mpi/mpich/

  85. FFTW homepage (2003) http://www.fftw.org/

  86. CVS concurrent versions system homepage (2003) http://www.cvshome.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Arnold .

Editor information

Christian Holm Kurt Kremer

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Arnold, A., Holm, C. Efficient Methods to Compute Long-Range Interactions for Soft Matter Systems. In: Holm, C., Kremer, K. (eds) Advanced Computer Simulation Approaches for Soft Matter Sciences II. Advances in Polymer Science, vol 185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136793

Download citation

Publish with us

Policies and ethics