Skip to main content

Sediment Geochronologies for Fish Farm Contaminants in Lime Kiln Bay, Bay of Fundy

  • Chapter
  • First Online:
Environmental Effects of Marine Finfish Aquaculture

Part of the book series: Handbook of Environmental Chemistry ((HEC5,volume 5M))

Abstract

Sedimentation rates were measured on gravity cores collected near finfish cages in Lime Kiln Bay, N.B. in the Western Bay of Fundy using the radionuclide tracers 210Pb and 137Cs. Sediment cores collected close to aquaculture sites that have undergone extensive salmon fish farm activity over the past 20 years exhibit elevated levels of Zn and Cu in the upper 50 cm of the cores. Sediment geochronologies indicate that the threshold horizons for elevated Zn and Cu levels conform to the initial introduction of fish farms into Lime Kiln Bay in 1981. The source of the Zn is the fish feed while Cu is associated with chemical agents used to reduce fouling of the cages by marine biota. The highest contaminant levels for Zn (>250 μg g−1) and Cu (>70 μg g−1) were measured in sediment cores collected within the “footprint” of previously abandoned sites. The contaminant signals decrease with increasing distance away from the cages to values approaching background levels at distances greater than 200 m from the original cage locations. Zn and Cu concentrations have remained elevated in sediments for the five-year period between the removal of the cages and the date of core collection, suggesting that remobilization of these metals from sediments following the termination of aquaculture operations may be minimal. P is present at elevated levels in sediments close to aquaculture sites because it is an important constituent of marine organic material associated with fish feed pellets and fish farm wastes. Elevated Cd, Mo and U levels were also observed in sediments deposited under salmon cages during past periods of aquaculture operations. These elements are soluble in seawater, but can be authigenically precipitated in sediments under reducing conditions. In the present study they have been used as indirect tracers of fish farm activities owing to their transfer from seawater to sediments under the anoxic sediment conditions generated by the high sediment flux of reactive organic material from aquaculture operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yeats PA, Milligan TG, Sutherland TF, Robinson SMC, Smith JA, Lawton P, Levings CD (2005) Lithium-normalized zinc and copper concentrations in sediments as measures of trace metal enrichment due to salmon aquaculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Chou CL, Haya K, Paon LA, Burridge L, Moffatt JD (2002) Mar Poll Bull 44:1259

    CAS  Google Scholar 

  3. Brooks KM, Mahnken CVW (2003) Fish Res 62:295

    Google Scholar 

  4. Sutherland TF, Martin AJ, Levings CD (2001) ICES J Mar Sci 58:404

    Article  CAS  Google Scholar 

  5. Chow KW, Schell WR (1978) In: Fish feed technology. Aquat Develop Coord Prog Rep No. ADCP/REP/80/11. FAO, Rome

    Google Scholar 

  6. Lewis AG, Metaxas A (1991) Aquacult 99:269

    Article  CAS  Google Scholar 

  7. Smith JN, Schafer CT (1999) Limnol Oceanogr 44:207

    CAS  Google Scholar 

  8. Smith JN, Walton A (1980) Geochim Cosmochim Acta 44:225

    Article  CAS  Google Scholar 

  9. Smith JN, Ellis KM, Nelson DM (1987) Chem Geol 63:157

    Article  CAS  Google Scholar 

  10. Smith JN (2001) J Environ Rad 55:121

    CAS  Google Scholar 

  11. Robbins JA, Holmes C, Reddy K, Newman S (2000) In: Proc South Pacific Environmental Radioactivity Conf, 19–23 June 2000, Noumea, New Caledonia

    Google Scholar 

  12. Gearing J, Buckley DE, Smith JN (1991) Can J Fish Aquat Sci 48:2344

    CAS  Google Scholar 

  13. Buckley DE, Smith JN, Winters GV (1994) App Geochem 10:175

    Google Scholar 

  14. Uotila U (1991) In: Makinen (ed) Marine aquaculture and environment. Nordic Council of Ministers, Copenhagen, p 121

    Google Scholar 

  15. Jones DS, Suter II GW, Hull RN (1997) Rep ES/ER/TM-95/R4. USDOE, Oak Ridge, TN, p 31

    Google Scholar 

  16. Naylor SJ, Moccia RD, Durant GM (1999) N Amer J Aquacult 61:21

    Google Scholar 

  17. Turekian KK, Bertine KK (1971) Nature 229:250

    Article  CAS  Google Scholar 

  18. Bertine KK, Turekian KK (1973) Geochim Cosmochim Acta 37:1415

    Article  CAS  Google Scholar 

  19. Calvert SE, Pedersen TF (1993) Mar Geol 113:67

    Article  CAS  Google Scholar 

  20. Zheng Y, Anderson RF, van Green A, Kuwabara J (2000) Geochim Cosmochim Acta 64:4165

    Article  CAS  Google Scholar 

  21. Nameroff TJ, Balistrieri LS, Murray JW (2002) Geochim Cosmochim Acta 66:1139

    Article  CAS  Google Scholar 

  22. Sundby B, Martinez P, Gobeil C (2004) Geochim Cosmochim Acta 68:2485

    Article  CAS  Google Scholar 

  23. Gobeil C, Silverberg N, Sundby B, Cossa D (1987) Geochim Cosmochim Acta 51:589

    Article  CAS  Google Scholar 

  24. Rosenthal Y, Lam P, Boyle EA, Thomson J (1995) Earth Planet Sci Lett 132:99

    Article  CAS  Google Scholar 

  25. Environmental and Food Agency of Iceland (1999) AMSUM Report, Environmental and Food Agency of Iceland. Office of Marine Environmental Protection, Ármúli, Iceland

    Google Scholar 

  26. Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li S-MW, Krupka KM (2000) Geochim Cosmochim Acta 64:3085

    Article  CAS  Google Scholar 

  27. Zheng Y, Anderson RF, van Green A, Fleisher MQ (2002) Geochim Cosmochim Acta 66:1759

    CAS  Google Scholar 

  28. Shimmield GB, Price NB (1986) Mar Chem 19:261

    Article  CAS  Google Scholar 

  29. Adelson JM, Helz GR, Miller CV (2001) Geochim Cosmochim Acta 65:237

    Article  CAS  Google Scholar 

  30. Chaillou G, Anschutz P, Lavaux G, Schafer J, Blanc G (2002) Mar Chem 80:41

    Article  CAS  Google Scholar 

  31. Loring DH (1982) Can J Earth Sci 19:930

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Smith .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Smith, J.N., Yeats, P.A., Milligan, T.G. Sediment Geochronologies for Fish Farm Contaminants in Lime Kiln Bay, Bay of Fundy. In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136012

Download citation

Publish with us

Policies and ethics