Skip to main content

Lattice dynamical effects on the peierls transition in one-dimensional metals and spin chains

  • Interactions
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

Abstract

The interplay of charge, spin and lattice degrees of freedom is studied for quasi-one-dimensional electron and spin systems coupled to quantum phonons. Special emphasis is put on the influence of the lattice dynamics on the Peierls transition. Using exact diagonalization techniques the ground-state and spectral properties of the Holstein model of spinless fermions and of a frustrated Heisenberg model with magneto-elastic coupling are analyzed on finite chains. In the non-adiabatic regime a (T=0) quantum phase transition from a gapless Luttinger-liquid/spin-fluid state to a gapped dimerized phase occurs at a nonzero critical value of the electron/spin-phonon interaction. To study the nature of the spin-Peierls transition at finite temperatures for the infinite system, an alternative Green’s function approach is applied to the magnetostrictive XY model. With increasing phonon frequency the structure factor shows a remarkable crossover from soft-mode to central-peak behaviour. The results are discussed in relation to recent experiments on CuGeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Peierls, Quanturn theory of solids., (Oxford University Press, Oxford 1955).

    Google Scholar 

  2. N. Tsuda, K. Nasu, A. Yanese, K. Siratori, Electronic Conduction in Oxides. (Springer-Verlag, Berlin, 1990); J.-P. Farges (Ed.), Organic Conductors. (Marcel Dekker, New York 1994).

    Google Scholar 

  3. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  4. T. Holstein, Ann. Phys. 8, 325 (1959); 8, 343 (1959).

    Article  ADS  Google Scholar 

  5. D. Khomskii, W. Geertsma, and M. Mostovoy, Czech. J. Phys. 46, 3239 (1996).

    Article  Google Scholar 

  6. J.W. Bray, L.V. Interrante, I.S. Jacobs, J.C. Bonner, p. 353 in Extended Linear Chain Compounds, ed. J.S. Miller (Plenum, New York 1985).

    Google Scholar 

  7. R.H. McKenzie, J.W. Wilkins, Phys. Rev. Lett. 69, 1085 (1992).

    Article  ADS  Google Scholar 

  8. G. Hutiray, J. Sólyom (Eds.), Charge Density Waves in Solids, volume 217 of Lecture Notes in Physics, (Springer, Berlin 1985).

    Google Scholar 

  9. L. Degiorgi et al., Phys. Rev. B 52, 5603 (1995).

    Article  ADS  Google Scholar 

  10. M. Hase, I. Terasaki, K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).

    Article  ADS  Google Scholar 

  11. M. Braden, et al., Phys. Rev. B 54, 1105 (1996); Phys. Rev. Lett 80, 3634 (1998).

    Article  ADS  Google Scholar 

  12. R. Werner, C. Gros, M. Braden, Phys. Rev. B 59, 14356 (1999).

    Article  ADS  Google Scholar 

  13. J.E. Lorenzo, et al., Phys. Rev. B 50, 1278 (1994).

    Article  ADS  Google Scholar 

  14. J.E. Hirsch, E. Fradkin, Phys. Rev. B 27, 4302 (1983).

    Article  ADS  Google Scholar 

  15. R.J. Bursill, R.H. McKenzie, C.J. Hamer, Phys. Rev. Lett. 80, 5607 (1998).

    Article  ADS  Google Scholar 

  16. R.H. McKenzie, C.J. Hamer, D.W. Murray, Phys. Rev. B 53, 9676 (1996).

    Article  ADS  Google Scholar 

  17. A. Weiße, H. Fehske, G. Wellein, A.R. Bishop cond-mat/0003125.

    Google Scholar 

  18. C.N. Yang, C.P. Yang, Phys. Rev. 150, 321 (1966); Phys. Rev. 151, 258 (1966).

    Article  ADS  Google Scholar 

  19. F.D.M. Haldane, Phys. Rev. Lett. 45, 1358 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Bäuml, G. Wellein, H. Fehske, Phys. Rev. B 58, 3663 (1998).

    Article  ADS  Google Scholar 

  21. A. Weiße, H. Fehske, Phys. Rev. B 58, 13526 (1998).

    Article  ADS  Google Scholar 

  22. G. Wellein, H. Fehske, Phys. Rev. B 58, 6208 (1998).

    Article  ADS  Google Scholar 

  23. G. Castilla, S. Chakravarty, V.J. Emergy, Phys. Rev. Lett. 75, 1823 (1995).

    Article  ADS  Google Scholar 

  24. F.D.M. Haldane, Phys. Rev. B 25, 4925 (1982).

    Article  ADS  Google Scholar 

  25. K. Okamoto, K. Nomura, Phys. Lett. A 169, 433 (1993).

    Article  ADS  Google Scholar 

  26. R. Chitra, S. Pati, H.R. Krishnamurthy, D. Sen, S. Ramasesha, Phys. Rev. B 52, 6581 (1995).

    Article  ADS  Google Scholar 

  27. S.R. White, I. Affleck, Phys. Rev. B 54, 9862 (1996).

    Article  ADS  Google Scholar 

  28. A.M. Tsvelik, Phys. Rev. B 45, 486 (1992).

    Article  ADS  Google Scholar 

  29. H. Yokoyama, Y. Saiga, J. Phys. Soc. Japan 66, 3617 (1997).

    Article  ADS  Google Scholar 

  30. K. Fabricius et al., Phys. Rev. B 57, 1102 (1997).

    Article  ADS  Google Scholar 

  31. B. Büchner, H. Fehske, A.P. Kampf, G. Wellein, Physica B 259–261, 956 (1999).

    Article  Google Scholar 

  32. G. Wellein, H. Fehske, A.P. Kampf, Phys. Rev. Lett. 81, 3956 (1998).

    Article  ADS  Google Scholar 

  33. D. Augier, D. Poilblanc, E. Sørensen, I. Affleck, Phys. Rev. B 58, 19110 (1998).

    Article  ADS  Google Scholar 

  34. A.W. Sandvik, D.K. Campell, Phys. Rev. Lett. 83, 195 (1999).

    Article  ADS  Google Scholar 

  35. K. Kuboki, H. Fukuyama, J. Phys. Soc. Jap. 56, 3136 (1987).

    ADS  Google Scholar 

  36. G.S. Uhrig, Phys. Rev. B 57, R14004 (1998).

    Article  ADS  Google Scholar 

  37. A. Weiße, G. Wellein, H. Fehske, Phys. Rev. B 60, 6566 (1999).

    Article  ADS  Google Scholar 

  38. R.J. Bursill, R.H. McKenzie, C.J. Hamer, Phys. Rev. Lett. 83, 408 (1999).

    Article  ADS  Google Scholar 

  39. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966).

    Article  ADS  Google Scholar 

  40. S. Trebst, N. Elstner, H. Monien, cond-mat/9907266.

    Google Scholar 

  41. M.C. Cross, D.S. Fisher, Phys. Rev. B 19, 402 (1979).

    Article  ADS  Google Scholar 

  42. M. Braden, B. Hennion, W. Reichardt, D. Dhalenne, A. Revcolevschi, Phys. Rev. Lett. 80, 3634 (1998).

    Article  ADS  Google Scholar 

  43. C. Gros, R. Werner, Phys. Rev. B 58, R14667 (1998).

    Article  ADS  Google Scholar 

  44. L.G. Caron, S. Moukouri, Phys. Rev. Lett. 76, 4050 (1996).

    Article  ADS  Google Scholar 

  45. P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928).

    Article  ADS  Google Scholar 

  46. H.S. Bennett, E. Pytte, Phys. Rev. 155, 553 (1967).

    Article  ADS  Google Scholar 

  47. M. Holicki, Diploma thesis, Universität Bayreuth (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Fehske, H., Holicki, M., Weiße, A. (2000). Lattice dynamical effects on the peierls transition in one-dimensional metals and spin chains. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108357

Download citation

  • DOI: https://doi.org/10.1007/BFb0108357

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics