Skip to main content

Flow equations for Hamiltonians

  • Correlations and Disorder
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

Abstract

A method to diagonalize or block-diagonalize Hamiltonians by means of an appropriate continuous unitary transformation is reviewed. Main advantages among others are: (i) In perturbation theory one obtains new results for effective interactions which are less singular than those obtained by conventional perturbation theory, eg. for the effective pair interaction by eliminating the electron-phonon interaction. (P. Lenz and F.W.) (ii) In systems with impurities as for example in the spin-boson problem large parameter regions can be treated in a consistent way (S. Kehrein and A. Mielke).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. F. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994).

    MATH  ADS  Google Scholar 

  2. S.K. Kehrein, A. Mielke, J. Phys. A27 4259, 5705 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S.K. Kehrein, A. Mielke, Ann. Phys. (NY) 252, 1 (1996).

    Article  ADS  Google Scholar 

  4. S. Kehrein, A. Mielke, P. Neu, z. Phys. B99, 269 (1996).

    Article  ADS  Google Scholar 

  5. S.K. Kehrein, A. Mielke, Phys. Lett. A219, 313 (1996).

    Article  ADS  Google Scholar 

  6. P. Lenz, F. Wegner, Nucl. Phys. B482, 693 (1996).

    Article  ADS  Google Scholar 

  7. H. Fröhlich, Proc. Roy. Soc. London A215, 291 (1952).

    Article  MATH  ADS  Google Scholar 

  8. A. Mielke, Ann. Physik (Leipzig) 6, 215 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. A. Mielke, Europhys. Lett. 40, 195 (1997).

    Article  ADS  Google Scholar 

  10. G.M. Eliashberg, Zh. Eksp. Theor. Fiz. 28, 966 (1960); 29, 1437 (1960); [Sov. Physics JEPT 11, 696, 12, 1000].

    Google Scholar 

  11. W. MacMillan Phys. Rev. 167 331 (1968).

    Article  ADS  Google Scholar 

  12. R.C. Dynes, Solid State Comm. 10, 615 (1972).

    Article  ADS  Google Scholar 

  13. S.D. Głazek, K.G. Wilson, Phys. Rev D48, 5863 (1993).

    Article  ADS  Google Scholar 

  14. S.D. Głazek, K.G. Wilson, Phys. Rev. D49, 4214 (1994).

    Article  ADS  Google Scholar 

  15. K.G. Wilson, T.S. Walhout, A. Harindranath, W.M. Zhang, R.J. Perry, S.D. S.D. Głazek, Phys. Rev. D4, 6720 (1994).

    Article  ADS  Google Scholar 

  16. M. Brisudova, R. Perry, Phys. Rev. D54, 1831 (1996).

    Article  ADS  Google Scholar 

  17. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Kabel, F. Wegner, Z. Physik B103, 555 (1997).

    Article  ADS  Google Scholar 

  19. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 491 (1966).

    Article  ADS  Google Scholar 

  20. M. Ragwitz, F.J. Wegner, Eur. Phys. J. B8 9 (1999).

    Article  ADS  Google Scholar 

  21. S.K. Kehrein, A. Mielke, Ann. Phys. (Leipzig) 6, 90 (1997).

    MATH  ADS  MathSciNet  Google Scholar 

  22. S.K. Kehrein, A. Mielke, J. Stat. Phys. 90, 889 (1998).

    Article  MATH  ADS  Google Scholar 

  23. J. Stein, J. Stat. Phys. 88, 487 (1997).

    Article  MATH  ADS  Google Scholar 

  24. J. Stein, Eur. Phys. J B5, 193 (1998).

    Article  ADS  Google Scholar 

  25. A. Mielke, Eur. Phys. J. B5, 605 (1998).

    Article  ADS  Google Scholar 

  26. H.J. Pirner, B. Friman, Phys. Lett. B434, 231 (1998).

    Article  ADS  Google Scholar 

  27. J. Stein, J. Phys. G26, 377 (2000).

    Article  ADS  Google Scholar 

  28. A.B. Bylev, H.J. Pirner, Phys. Lett. B428, 329 (1998).

    Article  ADS  Google Scholar 

  29. D. Cremers, A. Mielke, Physica D 126, 123 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. G.S. Uhrig, Phys. Rev. B57, R14004 (1998).

    Article  ADS  Google Scholar 

  31. C. Knetter, S.G. Uhrig, Eur. Phys. J B 13, 209 (2000).

    Article  ADS  Google Scholar 

  32. J. Stein, Eur. Phys. J B12, 5 (1999).

    Article  ADS  Google Scholar 

  33. S. Kehrein, Phys. Rev. Lett. 83, 4914 (1999).

    Article  ADS  Google Scholar 

  34. W. Hofstetter, S. Kehrein, Flussgleichungsanalyse des anisotropen Kondomodells, Verhandl. DPG (VI) 35, 781 (2000).

    Google Scholar 

  35. S.D. Głazek, K.G. Wilson, Phys. Rev. D57, 3558 (1998).

    Article  ADS  Google Scholar 

  36. B. Jones, R.J. Perry, S.D. Głazek, Phys. Rev. D55, 6561 (1997).

    Article  ADS  Google Scholar 

  37. E.L. Gubankova, F. Wegner, Phys. Rev. D58, 025012 (1998).

    Article  ADS  Google Scholar 

  38. E.L. Gubankova, H.C. Pauli, F.J. Wegner, Light-cone Hamiltonian flow for positronium, preprint MPI-H-V33-1998.

    Google Scholar 

  39. R.J. Perry, Light-front quantum chromodynamics nucl-th/9901080, to be published in the proceedings of the 1998 YITP-workshop on QCD and hadron physics, Kyoto, Japan, (World Scientific Publ., Singapore 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Wegner, F. (2000). Flow equations for Hamiltonians. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108350

Download citation

  • DOI: https://doi.org/10.1007/BFb0108350

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics