Skip to main content

Sonoluminescence: When bubbles glow

  • Conference paper
  • First Online:
Advances in Solid State Physics 38

Part of the book series: Advances in Solid State Physics ((ASSP,volume 38))

  • 73 Accesses

Abstract

Sound driven gas bubbles in water can emit light. This phenomenon is called sonoluminescence (SL). Two types of questions arise: 1. What is the origin of the light? and 2. When does SL occur? Whereas the first question is still not completely answered, the second question could be resolved within the hydrodynamical/chemical approach towards sonoluminescence we elaborated in the last three years. For SL to occur, the bubble collapse has to be violent enough to ensure energy transfer from the fluid to the gas in the bubble. Moreover, three kinds of instabilities have to be considered: (i) The bubble has to be shape stable. (ii) Diffusive stability distinguishes between unstable and stable SL. (iii) Chemical stability, i.e., molecular gases dissociate, react to water soluble gases and only inert gases remain within the bubble. Our results resolve various experimental paradoxes and quantitatively account for many measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. F. Gaitan, Ph.D. thesis, The University of Mississippi, 1990.

    Google Scholar 

  2. B. P. Barber et al. Phys. Rep. 281, 65 (1997).

    Article  ADS  Google Scholar 

  3. R. A. Hiller and B. B. Barber, Scientific American 272, 78 (1995).

    Article  Google Scholar 

  4. L. A. Crum, J. Acoust. Soc. Am. 57, 1363 (1975).

    Article  ADS  Google Scholar 

  5. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).

    Google Scholar 

  6. L. Rayleigh, Philos. Mag. 34, 94 (1917); M. Plesset, J. Appl. Mech. 16, 277 (1949).

    Google Scholar 

  7. S. Hilgenfeldt, D. Lohse, and M. P. Brenner, Phys. Fluids 8, 2808 (1996).

    Article  MATH  ADS  Google Scholar 

  8. C. C. Wu and P. H. Roberts, Phys. Rev. Lett. 70, 3424 (1993); W. Moss, D. Clarke, J. White, and D. Young, Phys. Fluids 6, 2979 (1994); L. Kondic, J. I. Gersten, and C. Yuan, Phys. Rev. E 52, 4976 (1995); V. Q. Vuong and A. J. Szeri, Phys. Fluids 8, 2354 (1996).

    Article  ADS  Google Scholar 

  9. W. Moss, D. Clarke, and D. Young, Science 276, 1398 (1997).

    Article  Google Scholar 

  10. M. Plesset and A. Prosperetti, Ann. Rev. Fluid Mech. 9, 145 (1977); A. Prosperetti, J. Fluid Mech. 222, 587 (1991).

    Article  ADS  Google Scholar 

  11. A. Prosperetti and Y. Hao, Phil. Trans. Roy. Soc., in press (1998).

    Google Scholar 

  12. T. Matula et al., Phys. Rev. Lett. 75, 2602 (1995).

    Article  ADS  Google Scholar 

  13. H. Frenzel and H. Schultes, Z. Phys. Chem. 27B, 421 (1934).

    Google Scholar 

  14. H. Kuttruff, Acustica 12, 230 (1962).

    Google Scholar 

  15. B. Gompf et al., Phys. Rev. Lett. 79, 1405 (1997).

    Article  ADS  Google Scholar 

  16. R. Hiller, S. J. Putterman, and K. R. Weninger, Phys. Rev. Lett. 80 1090 (1998).

    Article  ADS  Google Scholar 

  17. R. Pecha, B. Gompf, G. Nick, and W. Eisenmenger, Phys. Rev. Lett., submitted (1998).

    Google Scholar 

  18. B. P. Barber, et al., Phys. Rev. Lett. 72, 1380 (1994).

    Article  ADS  Google Scholar 

  19. G. Holt and F. Gaitan, Phys. Rev. Lett. 77, 3791 (1996).

    Article  ADS  Google Scholar 

  20. M. Plesset, J. Appl. Phys. 25, 96 (1954).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. A. Prosperetti, Quart. Appl. Math. 34, 339 (1977).

    MATH  Google Scholar 

  22. M. Brenner, D. Lohse, and T. Dupont, Phys. Rev. Lett. 75, 954 (1995). M. Brenner, T. Dupont, S. Hilgenfeldt, and D. Lohse, Phys. Rev. Lett. 80, 3668 (1998).

    Article  ADS  Google Scholar 

  23. P. Epstein and M. Plesset, J. Chem. Phys. 18, 1505 (1950); A. Eller, J. Acoust. Soc. Am. 46, 1246 (1969).

    Article  ADS  Google Scholar 

  24. R. Löfstedt, K. Weninger, S. J. Putterman, and B. P. Barber, Phys. Rev. E 51, 4400 (1995).

    Article  ADS  Google Scholar 

  25. M. M. Fyrillas and A. J. Szeri, J. Fluid Mech. 277, 381 (1994).

    Article  MATH  ADS  Google Scholar 

  26. A. Eller and H. G. Flynn, J. Acoust. Soc. Am. 37, 493 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Lohse et al., Phys. Rev. Lett. 78, 1359 (1997).

    Article  ADS  Google Scholar 

  28. M. P. Brenner, S. Hilgenfeldt, and D. Lohse, in Nonlinear Physics of Complex Systems— Current Status and Future Trends, edited by J. Parisi, S. C. Müller, and W. Zimmermann (Springer Lecture Notes in Physics, Berlin, 1996), p. 79.

    Google Scholar 

  29. D. Lohse and S. Hilgenfeldt, J. Chem. Phys. 107, 6986 (1997).

    Article  ADS  Google Scholar 

  30. S. Hilgenfeldt, D. Lohse, and W. Moss, Phys. Rev. Lett. 80, 1332 (1998).

    Article  ADS  Google Scholar 

  31. S. Hilgenfeldt, M. P. Brenner, S. Grossmann, and D. Lohse, J. Fluid Mech., J. Fluid Mech. 365, 171 (1998).

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Lohse, D., Hilgenfeldt, S. (1999). Sonoluminescence: When bubbles glow. In: Kramer, B. (eds) Advances in Solid State Physics 38. Advances in Solid State Physics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107620

Download citation

  • DOI: https://doi.org/10.1007/BFb0107620

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41575-6

  • Online ISBN: 978-3-540-44558-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics