Skip to main content

Si1−x−yGexCy alloys: Growth and properties of a new semiconducting material

  • Conference paper
  • First Online:
Advances in Solid State Physics 38

Part of the book series: Advances in Solid State Physics ((ASSP,volume 38))

  • 57 Accesses

Abstract

The growth and properties of Si1−y Cy and Si1−x−y GexCy alloys pseudomorphically strained on Si(001) is reviewed. Although the bulk solubility of carbon in silicon is small, epitaxial layers which more than 1 at. % C can be fabricated by molecular beam epitaxy and different chemical vapor deposition techniques. One of the most crucial questions is the relation between substitutional and interstitial carbon incorporation, which has a large impact on the electrical and optical properties of these layers. Substitutionally incorporated C atoms allow strain manipulation, including the growth of an inversely strained Si1−x−y GexCy layer. Local ordering effects due to atomic size differences and the growth on reconstructed surfaces, the mechanical and structural properties, and the influence of C atoms on band structure and charge carrier properties will be discussed. We show how lower carbon concentrations can influence dopant diffusion, without affecting strain and band alignment. Finally, we present possible applications of this new semiconducting material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S.C. Jain, Germanium-Silicon Strained Layers and Heterostructures (Academic Press, Boston, 1994).

    Google Scholar 

  2. S.C. Jain, H.J. Osten, B. Dietrich, and H. Rücker, Semicond. Sci. Technol. 10, 1289 (1995).

    Article  ADS  Google Scholar 

  3. G. Davies, and R.C. Newman, Carbon in Monocrystalline Silicon, in Handbook of Semiconductors Vol. 3, ed. by T.S. Moss, Elsevier Science B. V.

    Google Scholar 

  4. J. Tersoff, Phys. Rev. Lett. 74, 5080 (1995).

    Article  ADS  Google Scholar 

  5. P.C. Kelires, and J. Tersoff, Phys. Rev. Lett. 63, 1164 (1989).

    Article  ADS  Google Scholar 

  6. W.J. Taylor, T.Y. Tan, and U. Goesele, Appl. Phys. Lett. 62, 3336 (1993).

    Article  ADS  Google Scholar 

  7. M.S. Goorsky, S.S. Iyer, K. Eberl, F.K. LeGouech, J. Angilello, and F. Cardonne, Appl. Phys. Lett. 60, 2758 (1992).

    Article  ADS  Google Scholar 

  8. G.G. Fischer, P. Zaumseil, E. Bugiel, and H.J. Osten, J. Appl. Phys. 77, 1934 (1995).

    Article  ADS  Google Scholar 

  9. H.J. Osten, M. Kim, K. Pressel, and P. Zaumseil, J. Appl. Phys. 80, 6711 (1996).

    Article  ADS  Google Scholar 

  10. E.T. Croke, A.T. Hunter, P.O. Petterson, C.C. Ahn, and T.C. McGill, Thin Solid Films 294, 105 (1997).

    Article  ADS  Google Scholar 

  11. G. Lippert, P. Zaumseil, H.J. Osten, and M. Kim, J. Crystal Growth 175/176, 476 (1997).

    Article  Google Scholar 

  12. H.J. Osten, E. Bugiel, and P. Zaumseil, Appl. Phys. Lett. 64, 3440 (1994).

    Article  ADS  Google Scholar 

  13. A.R. Powell, K. Eberl, B.A. Ek, and S.S. Iyer, J. Crystal Growth 127, 425 (1993).

    Article  ADS  Google Scholar 

  14. B. Dietrich, H.J. Osten, Rücker, H., M. Methfessel, and P. Zaumseil, Phys. Rev. B 49, 17185 (1994).

    Article  ADS  Google Scholar 

  15. Rücker, H., M. Methfessel, B. Dietrich, K. Pressel, and H.J. Osten, Phys. Rev. B 53, 1302 (1996).

    Article  ADS  Google Scholar 

  16. Rücker, H., M. Methfessel, E. Bugiel, and H.J. Osten, Phys. Rev. Lett. 72, 3578 (1994).

    Article  ADS  Google Scholar 

  17. P. Warren, J. Mi, F. Overney, and M. Dutoit, J. Cryst. Growth 157, 414 (1995).

    Article  ADS  Google Scholar 

  18. P. Zaumseil, G.G. Fischer, K. Brunner, and K. Eberl, J. Appl. Phys. 81, 6134 (1997).

    Article  ADS  Google Scholar 

  19. H.J. Osten, D. Endisch, E. Bugiel, B. Dietrich, G.G. Fischer, M. Kim, D. Krüger, and P. Zaumseil, Semicond. Sci. Technol. 11, 1678 (1996).

    Article  ADS  Google Scholar 

  20. H.J. Osten, and E. Bugiel, Appl. Phys. Lett 70, 2813 (1997).

    Article  ADS  Google Scholar 

  21. R.A. Soref, J. Appl. Phys. 70, 2470 (1991).

    Article  ADS  Google Scholar 

  22. A.A. Demkov, and O.F. Sankey, Phys. Rev. B 48, 2207 (1993).

    Article  ADS  Google Scholar 

  23. W. Kissinger, M. Weidner, H.J. Osten, and M. Eichler, Appl. Phys. Lett. 65, 3356 (1994).

    Article  ADS  Google Scholar 

  24. S. Zollner, J. Appl. Phys. 78, 5209 (1995).

    Article  ADS  Google Scholar 

  25. W. Kissinger, H.J. Osten, M. Weidner, and M. Eichler, J. Appl. Phys. 79, 3016 (1996).

    Article  ADS  Google Scholar 

  26. K. Rim, S. Takagi, J.J. Welser, J.L. Hoyt, and J.F. Gibson, Mater. Res. Soc. Symp. Proc. Vol. 379, 327 (1995).

    Google Scholar 

  27. K. Brunner, K. Eberl, and W. Winter, Phys. Rev. Lett. 76, 303 (1996).

    Article  ADS  Google Scholar 

  28. M. Kim, and H.J. Osten, Appl. Phys. Lett. 70, 2702 (1997).

    Article  ADS  Google Scholar 

  29. H.J. Osten, and P. Gaworzewski, J. Appl. Phys. 82, 4977 (1997).

    Article  ADS  Google Scholar 

  30. K. Brunner, W. Winter, K. Eberl, N.Y. Jin-Phillipp, and F. Phillipp, J. Crystal Growths 175/176, 451 (1997).

    Article  Google Scholar 

  31. P.A. Stolk, H.-J. Gossmann, D.J. Eaglesham, and J.M. Poate, Materials Science and Engineering B 36, 275 (1996).

    Article  Google Scholar 

  32. T. Ghani, J.L. Hoyt, A.M. McCarthy, and J.F. Gibbons, J. Electron. Materials 24, 999 (1995).

    Article  ADS  Google Scholar 

  33. D. Knoll, B. Heinemann, K.E. Ehwald, P. Schley, W. Rœpke, D. Bolze, J. Schlote, F. Herzel, and G. Fischer, Proc. 25th ESSDERC, pp. 627–630 (1995).

    Google Scholar 

  34. J. Tersoff, Phys. Rev. Lett. 64, 1757 (1990).

    Article  ADS  Google Scholar 

  35. G.D. Watkins, in Radiation Effects in Semiconductors, Ed. M. Hulin, Dunod, Paris, p. 97 (1965).

    Google Scholar 

  36. P.M. Fahey, P.B. Griffin, and J.D. Plummer, Rev. Mod. Phys. 61, 289 (1989).

    Article  ADS  Google Scholar 

  37. P.J. Drevinsky, C.E. Caefer, S.P. Tobin, J.C. Mikkelsen, and L.C. Kimerling, Mater. Res. Soc. Symp. Proc. Vol. 104, 167 (1988).

    Google Scholar 

  38. T.T. Fang, W.T.C. Fang, P.B. Griffin, and J.D. Plummer, Appl. Phys. Lett. 68, 791 (1996).

    Article  ADS  Google Scholar 

  39. L.C. Kimerling, M.T. Asam, J.L. Benton, P.J. Drevinsky, and C.E. Caefer, Material Sci. Forum 38–41, 141 (1989).

    Article  Google Scholar 

  40. H.J. Osten, G. Lippert, P. Gaworzewski, and R. Sorge, Appl. Phys. Lett. 71, 1522 (1997).

    Article  ADS  Google Scholar 

  41. H.J. Osten, G. Lippert, D. Knoll, R. Barth, B. Heinemann, H. Rücker, and P. Schley, IEDM Techn. Digest, pp. 803 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Osten, H.J. (1999). Si1−x−yGexCy alloys: Growth and properties of a new semiconducting material. In: Kramer, B. (eds) Advances in Solid State Physics 38. Advances in Solid State Physics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107611

Download citation

  • DOI: https://doi.org/10.1007/BFb0107611

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41575-6

  • Online ISBN: 978-3-540-44558-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics