Skip to main content

GaAs/AlGaAs quantum wire lasers and other low-dimensional structures fabricated by cleaved edge overgrowth

  • Chapter
  • First Online:
Advances in Solid State Physics 35

Part of the book series: Advances in Solid State Physics ((ASSP,volume 35))

Abstract

Cleaved edge overgrowth—a molecular beam epitaxy technique which incorporates two sequential growth steps along orthogonal crystal directions —was employed to fabricate lasers containing an array of 22 quantum wires with cross-sections of about 7 by 7 nm. In addition, we have applied this method to prepare single modulation-doped quantum wires exhibiting electron mobilities in excess of 2×105 cm2/Vs.

The active region of the lasers consists of atomically precise quantum wires that form at the T-shaped intersections of [001] oriented quantum wells with those grown, after an in situ cleave, along the [110] crystal axis. The origin of the quantum mechanical bound state is the relaxation of quantum well confinement at this intersection, which leads to an expansion of the electron and hole wavefunctions into the larger available volume at the T-junction. The quantum wires are, in turn, embedded in a T-shaped dielectric waveguide formed by [001] and [110] oriented cladding layers, which confine the optical mode to the vicinity of the one-dimensional quantum structures. The high degree of structural perfection achievable in this way allows the observation of stimulated optical emission in optically as well as in electrically pumped devices. Efficient current injection into the wires by p and n doping in the two growth directions is demonstrated by the suppression of optical emission from the quantum well states as well as by threshold currents as low as 400 μA for uncoated devices at 1.7 K. From the absence of bandgap renormalization effects manifested in the near constancy of the quantum wire emission wavelength with changes in pump power over almost three orders of magnitude, we conclude that the Mott density for ionization of the one-dimensional excitons is never reached. This suggests that gain in these lasers is due to exciton recombination and indicates interesting new behavior of exciton in low-dimensional systems.

In two-terminal magnetoresistance measurements along the modulation-doped quantum wires we see clear evidence for two-dimensional confinement of the electrons. The observed retarded depopulation of Landau levels at low magnetic fields is in close agreement with a calculation of the magnetic field dependence of the number of occupied subbands in a narrow channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  ADS  Google Scholar 

  2. Y. Arakawa and A. Yariv, IEEE J. Quantum Electron. QE-22, 1887 (1986).

    Article  ADS  Google Scholar 

  3. M. Asada, Y. Miyamoto and Y. Suematso, IEEE J. Quantum Electron. QE-22, 1915 (1986).

    Article  ADS  Google Scholar 

  4. S. Schmitt-Rink, D. S. Chemla and D. A. B. Miller, Advan. in Phys. 38, 89 (1989).

    Article  ADS  Google Scholar 

  5. M. H. Degani and O. Hipolito, Phys. Rev. B 35, 9345 (1987).

    Article  ADS  Google Scholar 

  6. L. Bányai, I. Galbraith, C. Ell and H. Haug, Phys. Rev. B, 36, 6099 (1987).

    Article  ADS  Google Scholar 

  7. T. Ogawa and T. Takahara, Phys. Rev. B 43, 14325 (1991); 44, 8138 (1991).

    Article  ADS  Google Scholar 

  8. A. L. Ivanov and H. Haug, Phys. Rev. Lett. 71, 3182 (1993).

    Article  ADS  Google Scholar 

  9. For review, see: C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  10. E. Kapon, D. M. Hwang and R. Bhat, Phys. Rev. Lett. 63, 430 (1989).

    Article  ADS  Google Scholar 

  11. M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldren and P. M. Petroff, Phys. Rev. Lett. 62, 466 (1989).

    Article  ADS  Google Scholar 

  12. R. Nötzel, N. N. Ledentsov, L. Däweritz, M. Hohenstein and K. Ploog, Phys. Rev. Lett. 67, 3812 (1991).

    Article  ADS  Google Scholar 

  13. S. Tsukamoto, Y. Nagamune, M. Nishioka and Y. Arakawa, Appl. Phys. Lett. 63, 355 (1993).

    Article  ADS  Google Scholar 

  14. K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle and G. Weimann, Phys. Rev. Lett. 69, 3216 (1992).

    Article  ADS  Google Scholar 

  15. F. E. Prins, G. Lehr, M. Burkard, H. Schweizer, M. H. Pillkuhn and G. W. Smith, Appl. Phys. Lett. 62, 1365 (1993).

    Article  ADS  Google Scholar 

  16. H. Sakaki, Jpn. J. Appl. Phys. 19, 94 (1980).

    Article  Google Scholar 

  17. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marcel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  18. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).

    Article  ADS  Google Scholar 

  19. H. L. Störmer, A. C. Gossard and W. Wiegmann, unpublished.

    Google Scholar 

  20. L. N. Pfeiffer, K. W. West, H. L. Störmer, J. P. Eisenstein, K. W. Baldwin, D. Bershoni, and J. Spector, Appl. Phys. Lett. 56, 1697 (1990).

    Article  ADS  Google Scholar 

  21. A. H. Kean, M. C. Holland, and C. R. Stanley, J. Crystal Growth 127, 904 (1993).

    Article  ADS  Google Scholar 

  22. M. M. Dignam, unpublished.

    Google Scholar 

  23. L. Pfeiffer, H. Baranger, D. Gershoni, K. Smith, and W. Wegscheider, Proc. of the NATO Advanced Research Workshop on “Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates” (Rottach-Egern, Germany, 1995).

    Google Scholar 

  24. A. R. Goñi, L. N. Pfeiffer, K. W. West, A. Pinczuk, H. U. Baranger and H. L. Störmer, Appl. Phys. Lett. 61, 1956 (1992).

    Article  ADS  Google Scholar 

  25. W. Wegscheider, L. N. Pfeiffer, M. M. Dignam, a. Pinczuk, K. W. West, S. L. McCall and R. Hull, Phys. Rev. Lett. 71, 4071 (1993).

    Article  ADS  Google Scholar 

  26. W. Wegscheider, L. Pfeiffer, K. West, and R. E. Leibenguth, Appl. Phys. Lett. 65, 2510 (1994).

    Article  ADS  Google Scholar 

  27. W.-K. Wang, unpublished.

    Google Scholar 

  28. R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, and K. West, Appl. Phys. Lett. 64, 1421 (1994).

    Article  ADS  Google Scholar 

  29. E. F. Schubert, J. M. Kuo, R. F. Kopf, A. S. Jordan, H. S. Luftman and L. C. Hopkins, Phys. Rev. B 42, 1364 (1990).

    Article  ADS  Google Scholar 

  30. J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon and R. J. Elliot, Phys. Rev. Lett. 59, (1987), 2337.

    Article  ADS  Google Scholar 

  31. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Adv. in Physics 38, 89 (1989).

    Article  ADS  Google Scholar 

  32. J. Ding, H. Jeon, T. Ishihara, M. Hagerott and A. V. Nurmikko, Phys. Rev. Lett. 69, 1707 (1992).

    Article  ADS  Google Scholar 

  33. R. L. Greene, K. K. Bajaj and D. E. Phelps, Phys. Rev. B 29, 1807 (1984).

    Article  ADS  Google Scholar 

  34. L. C. Andreani and A. Pasquarello, Phys. Rev. B 42, 8928 (1990).

    Article  ADS  Google Scholar 

  35. M. Kohl, D. Heitmann, P. Grambow and K. Ploog, Phys. Rev. Lett. 63, 2124 (1989).

    Article  ADS  Google Scholar 

  36. C. W. J. Beenakker and H. van Houten, in Solid State Physics: Advances in Research and Applications (Edited by H. Ehrenreich and D. Turnbull), Vol. 44, pp. 1–228, (Academic Press, New York, 1991). *** DIRECT SUPPORT *** A00AX035 00007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Wegscheider, W., Pfeiffer, L.N., West, K.W. (1996). GaAs/AlGaAs quantum wire lasers and other low-dimensional structures fabricated by cleaved edge overgrowth. In: Helbig, R. (eds) Advances in Solid State Physics 35. Advances in Solid State Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107544

Download citation

  • DOI: https://doi.org/10.1007/BFb0107544

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08043-3

  • Online ISBN: 978-3-540-75334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics