Skip to main content

Negative-U properties for defects in solids

  • Chapter
  • First Online:
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 24))

Abstract

A defect has negative-U properties if it can trap two electrons (or holes) with the second bound more strongly than the first. The system can be thought of as an extrinsic Cooper pair, the defect providing an environment in which a net attraction can develop between the otherwise Coulombically repulsive carriers. Evidence previously cited for this behavior in selected liquid and solid state systems will be reviewed. Recently, the first direct and unambiguous demonstration of the phenomenon in a solid has been supplied for two simple point defects in crystalline silicon—the lattice vacancy and interstitial boron. The experiments leading to this identification are described and mechanisms for this remarkable phenomenon are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hubbard, Proc. Roy. Soc. A276, 238 (1963).

    Article  ADS  Google Scholar 

  2. H. J. Hoffmann, Appl. Phys. A27, 39 (1982). In this paper Hoffmann notes subtle differences between the Hall properties for normal and negative-U levels that he argues should be detectable under careful analysis.

    Google Scholar 

  3. L. N. Cooper, Phys. Rev., 104, 1189 (1956).

    Article  MATH  ADS  Google Scholar 

  4. See, for example, John Burgess, Metal Ions in Solution, Chichester, Ellis Horwood Ltd., 1978.

    Google Scholar 

  5. G. Milazzo and S. Caroli, Table of Standard Electrode Potentials, New York, Wiley, 1978.

    Google Scholar 

  6. Handbook of Chemistry and Physics, 60th edn., Boca Raton, CRC Press, 1980, pgs. D-155-160.

    Google Scholar 

  7. W. Weyl, Pogg. Ann. 121, 601 (1863).

    Google Scholar 

  8. The recent evolution of this fascinating topic is chronicled in the published proceedings of the international “Colloque Weyl” conferences: I. Metal Ammonia Solutions, ed. by G. Lepourtre and M. J. Sienko, N. Y., Benjamin, 1964; II. Metal Ammonia Solutions, ed. by J. J. Lagowski and M. J. Sienko, London, Butterworths 1970; III. Electrons in Fluids, ed. by J. Jortner and N. R. Kastner, Berlin, Springer-Verlag 1973; IV. J. Phys. Chem. 79, 2789–3079 (1975); V. J. Phys. Chem. 84, 1065–1298 (1980). See also M. H. Cohen and J. C. Thompson, Adv. Phys. 18, 665 (1969).

    Google Scholar 

  9. R. A. Ogg. Jr., J. Am. Chem. Soc. 68, 155 (1946).

    Article  Google Scholar 

  10. R. A. Ogg. Jr., J. Chem. Phys. 14, 114 (1946).

    Article  ADS  Google Scholar 

  11. R. A. Ogg. Jr., J. Chem. Phys. 14, 295 (1946).

    Article  ADS  Google Scholar 

  12. S. Freed and N. Sugarman, J. Chem. Phys. 11, 354 (1943).

    Article  ADS  Google Scholar 

  13. J. Kaplan and C. Kittel, J. Chem. Phys. 21, 1429 (1953).

    Article  ADS  Google Scholar 

  14. R. H. Land and D. E. O’Reilly, J. Chem. Phys. 46, 4496 (1967).

    Article  ADS  Google Scholar 

  15. M. D. Newton, J. Phys. Chem. 79, 2795 (1975).

    Article  Google Scholar 

  16. J. L. Dye, C. W. Andrews and J. M. Ceraso, J. Phys. Chem. 79, 3076 (1975).

    Article  Google Scholar 

  17. P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975).

    Article  ADS  Google Scholar 

  18. V. L. Vinetskii, Zh. Eksp. Teor. Fiz. 40, 1459 (1961) [Sov. Phys. JETP 13, 1023 (1961)].

    Google Scholar 

  19. T. D. Shultz, in Polarons and Excitons, ed. by C. G. Kuper and G. D. Whitfield, New York, Plenum 1962, p. 110.

    Google Scholar 

  20. S. Laskis, C. Schlenker, B. K. Chakraverty, R. Buder and M. Marezio, Phys. Rev. B14, 1429 (1976).

    Article  ADS  Google Scholar 

  21. C. Schlenker, S. Ahmed, R. Buder and M. Gourmala, J. Phys. C 12, 3503 (1979).

    Article  ADS  Google Scholar 

  22. O. F. Schirmer and E. Salje, J. Phys. C13, L1067 (1980).

    Article  ADS  Google Scholar 

  23. T. M. Rice and L. Sneddon, Phys. Rev. Lett. 47, 689 (1981).

    Article  ADS  Google Scholar 

  24. M. Peo, S. Roth, K. Dransfeld, B. Tieke, J. Hocker, H. Gross, A. Grupp and H. Sixl, Sol. St. Comm. 35, 119 (1980).

    Article  ADS  Google Scholar 

  25. J. L. Bredas, R. R. Chance and R. Silbey, Phys. Rev. B26, 5843 (1982).

    Article  ADS  Google Scholar 

  26. C. Crecelius, M. Stamm, J. Fink and J. J. Ritsko, Phys. Lett. 50, 1498 (1983).

    Article  Google Scholar 

  27. N. A. Cade and B. Movaghar, J. Phys. C 16, 539 (1983).

    Article  ADS  Google Scholar 

  28. J. C. Scott, P. Pfluger, M. T. Krounbi and G. B. Street, Phys. Rev. B28, 2140 (1983).

    Article  ADS  Google Scholar 

  29. A. Alexandrov and J. Ranninger, Phys. Rev. B24, 1164 (1981).

    Article  ADS  Google Scholar 

  30. B. K. Chakraverty, J. Physique 42, 1351 (1981).

    Article  Google Scholar 

  31. S. A. Brazovskii and N. N. Kirova, Pis. Zh. Eksp. Teor. Fiz. 33, 6 (1981) [JETP Lett. 33, 4 (1981)].

    Google Scholar 

  32. R. A. Street and N. F. Mott, Phys. Rev. Lett. 35, 1293 (1975).

    Article  ADS  Google Scholar 

  33. M. Kastner, D. Adler and H. Fritzsche, Phys. Rev. Lett. 37, 1504 (1976).

    Article  ADS  Google Scholar 

  34. Kastner et al. originally suggested that the neutral state would also be threefold coordinated. Subsequently, more detailed calculations by Vanderbilt and Joannopoulos [35] concluded that it would be singly coordinated.

    Google Scholar 

  35. D. Vanderbilt and J. D. Joannopoulos, Phys. Rev. B27, 6311 (1983).

    Article  ADS  Google Scholar 

  36. D. C. Licciardello, D. L. Stein and F. D. M. Haldane, Phil. Mag. B43, 189 (1981).

    Google Scholar 

  37. D. Emin, Comments Sol. St. Phys. 11, 35 and 59 (1983).

    Google Scholar 

  38. See recent reviews by J. Robertson, Phys. and Chem. of Glasses 23, 1 (1982) and Adv. in Phys. 32, 361 (1983).

    Google Scholar 

  39. H. Fritzsche, J. Phys. Soc. Japan 49, suppl. A, 39 (1980).

    Google Scholar 

  40. S. G. Bishop, U. Strom and P. C. Taylor, Phys. Rev. B15, 2278 (1977).

    Article  ADS  Google Scholar 

  41. G. Pfister, K. S. Liang, M. Morgan, P. C. Taylor, E. J. Friebele, and S. G. Bishop, Phys. Rev. Lett. 41, 1318 (1978).

    Article  ADS  Google Scholar 

  42. D. K. Biegelsen and R. A. Street, Phys. Rev. Lett. 44, 803 (1980).

    Article  ADS  Google Scholar 

  43. Y. V. Andreev, K. I. Geiman, I. A. Drabkin, A. V. Matveenko, E. A. Mozhaev, and B. Y. Moizhes, Fiz. Tekh. Poluprovodn. 9, 1873 (1975); [Sov. Phys. Semic. 9, 1235 (1975)].

    Google Scholar 

  44. I. A. Drabkin and B. Y. Moizhes, Fiz. Tekh. Poluprovodn. 15, 625 (1981); [Sov. Phys. Semic. 15, 357 (1981)]. This also provides a good review of evidence for negative-U behavior of impurities in other systems. An interesting suggestion is made, for instance, that the MXWO3 tungsten bronzes are examples of negative-U behavior of the alkali (M) ion dopant.

    Google Scholar 

  45. K. Weiser, Phys. Rev. B25, 1408 (1982).

    Article  ADS  Google Scholar 

  46. A. A. Averkin, V. I. Kaidanov and R. B. Mel’nik, Fiz. Tekh. Poluprovodn. 5, 91 (1971); [Sov. Phys. Semic. 5, 75 (1971)].

    Google Scholar 

  47. Y. Kagan and K. A. Kikoin, Pis. Eksp. Teor. Fiz. 31, 367 (1980) [JETP Lett. 31, 335 (1980)].

    Google Scholar 

  48. I. A. Drabkin, M. A. Kvantov, V. V. Kompaniets and Y. P. Kostikov, Fiz. Tekh. Poluprovodn. 16, 1276 (1982); [Sov. Phys. Semic. 16, 815 (1982)].

    Google Scholar 

  49. G. D. Watkins and J. R. Troxell, Phys. Rev. Lett. 44, 593 (1980).

    Article  ADS  Google Scholar 

  50. J. R. Troxell and G. D. Watkins, Phys. Rev. B22, 921 (1980).

    Article  ADS  Google Scholar 

  51. G. D. Watkins, A. P. Chatterjee, and R. D. Harris, in Defects and Radiation Effects in Semiconductors, ed. by R. Hasiguti, London, Inst. of Phys. (Conf. Se. No. 59) 1981, p. 199.

    Google Scholar 

  52. G. D. Watkins, in Defects in Semiconductors, ed. by J. Narayan and T. Y. Tan, New York, North-Holland 1981, p. 21.

    Google Scholar 

  53. R. D. Harris, J. L. Newton and G. D. Watkins, Phys. Rev. Lett. 48, 1271 (1982).

    Article  ADS  Google Scholar 

  54. R. D. Harris, J. L. Newton and G. D. Watkins, Phys. Rev. Lett. 51, 1722 (1983).

    Article  ADS  Google Scholar 

  55. J. L. Newton, A. P. Chatterjee, R. D. Harris and G. D. Watkins, Physica 116B, 219 (1983).

    Google Scholar 

  56. G. D. Watkins, Phys. Rev. B12, 5824 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  57. After correction for the T2 temperature dependence of the combined free carrier thermal velocity and density of states.

    Google Scholar 

  58. G. L. Miller, D. V. Lang and L. C. Kimerling, Ann. Rev. Mater. Sci. 7, 377 (1977).

    Article  ADS  Google Scholar 

  59. G. D. Watkins, in Lattice Defects in Semiconductors 1974, ed. by F. A. Huntley, London, Inst. of Phys. (Conf. Se. No. 23) 1975, p. 1.

    Google Scholar 

  60. L. C. Kimerling, in Radiation Effects in Semiconductors, ed. by F. A. Huntley, London, Inst. of Phys. (Conf. Se. No. 31) 1977, p. 221.

    Google Scholar 

  61. J. Frenkel, Tech. Phys. USSR 5, 685 (1938) and Phys. Rev. 54, 647 (1938).

    Google Scholar 

  62. A. R. Williams, P. J. Feibelman and N. D. Lang, Phys. Rev. B26, 5433 (1982).

    Article  ADS  Google Scholar 

  63. G. A. Baraff and M. Schluter, Phys. Rev. B28, 2296 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  64. R. Car, P. J. Kelly, A. Oshijama, and S. T. Pantelides, to be published.

    Google Scholar 

  65. G. A. Baraff, E. O. Kane, and M. Schluter, Phys. Rev. Lett. 43, 956 (1979).

    Article  ADS  Google Scholar 

  66. G. A. Baraff, E. O. Kane and M. Schluter, Phys. Rev. B21, 3563 (1980).

    Article  ADS  Google Scholar 

  67. G. A. Baraff, E. O. Kane and M. Schluter, Phys. Rev. B22, 5662 (1980).

    Google Scholar 

  68. G. D. Watkins, J. R. Troxell and A. P. Chatterjee, in Defects and Radiation Effects in Semiconductors 1978, ed. by J. H. Albany, London, Inst. of Phys. (Conf. Se. No. 46) 1979, p. 16.

    Google Scholar 

  69. G. D. Watkins, Phys. Rev. B12, 4383 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  70. B. N. Mukashev, V. V. Frolov and L. G. Kolodin, Physics Letters 91A, 358 (1982).

    ADS  Google Scholar 

  71. B. N. Mukashev, L. G. Kolodin, K. H. Nussupov, A. V. Spitsyn and V. S. Vavilov, Radiat. Eff. 46, 79 (1980).

    Article  Google Scholar 

  72. H. J. Hoffmann, Physics Letters 98A, 444 (1983).

    ADS  Google Scholar 

  73. G. D. Watkins, A. P. Chatterjee, R. D. Harris and J. R. Troxell, Semic. and Ins. 5, 321 (1983).

    Google Scholar 

  74. E. Simanek, Sol. St. Comm. 32, 731 (1979).

    Article  ADS  Google Scholar 

  75. C. S. Ting, D. N. Talwar and K. L. Ngai, Phys. Rev. Lett. 45, 1213 (1980).

    Article  ADS  Google Scholar 

  76. I. A. Chernik and S. N. Likhov, Fiz. Tverd. Tela 23, 1400 (1981) [Sov. Phys. Sol. St. 23, 817 (1981)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Watkins, G.D. (1984). Negative-U properties for defects in solids. In: Grosse, P. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107450

Download citation

  • DOI: https://doi.org/10.1007/BFb0107450

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08030-3

  • Online ISBN: 978-3-540-75374-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics