Skip to main content

Positive lyapounov exponents for most energies

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1745))

Abstract

Consider the ID lattice Schrödinger operator

$$H = \lambda \cos (2\pi n^\rho \omega + \theta )\delta _{nn'} + \Delta$$
((1))

with 1 < ρ < 2 and define

$$\gamma (E,\lambda )\mathop {\underline {\lim } }\limits_{N \to \infty } \frac{1}{N}\int_\mathbb{T} {\log } \left\| {\prod\limits_N^0 {\left( {\begin{array}{*{20}c}{E - \lambda cos(2\pi n^\rho \omega + \theta ) - 1} \\{10} \\\end{array} } \right)} } \right\|d\theta$$

. If λ > 2, M. Herman’s [H] argument implies that γ(E,λ)≥log λ/2 >0, for all E. We are interested here in small λ and show that for all EE λ⊂[−2,2]

$$mes([ - 2,2]\backslash \mathcal{E}_\lambda )\xrightarrow{{\lambda \to 0}}0$$
((2))

we have that γ(E, λ) > 0. See Proposition 4.

Considering the skew shift on \(\mathbb{T}^2\)

$$T(x,y) = (x + y,y + \omega )$$
((3))

and the Hamiltonian

$$H = \lambda \cos (\pi _1 T^m (x,y))\delta _{nn'} + \Delta$$
((4))

where \(\pi _1 T^m (x,y) = x + ny + \frac{{n(n - 1)}}{2}\omega\)we show that the Lyapounov exponent

$$\gamma (E,\lambda )^{\underline{\underline {a.e.}} } \mathop {\underline {\lim } }\limits_{N \to \infty } \frac{1}{N}\log \left\| {\prod\limits_N^0 {\left( {\begin{array}{*{20}c}{E - \lambda \cos \pi _1 T^n (x,y) - 1} \\{10} \\\end{array} } \right)} } \right\|$$

is strictly positive for EE λ⊂[−2,2] satisfying (2), provided we assume in (3) that

$$\left| \omega \right| < \varepsilon (\lambda )$$

. See Proposition 5.

The method is based on a local approximation of (1), (4) by the almost Mathieu model

$$H_{\alpha ,\lambda ,\theta } = \lambda \cos (2\pi \alpha + \theta )\delta _{nn'} + \Delta$$
((5))

and uses the fact (see Corollary 3) that for λ small and EE λ⊂[−2,2] satisfying (2),

$$\int_\mathbb{T} {\gamma (\alpha ,\lambda ,E)d\alpha > 0}$$
((6))

where γ(α, λ, E) refers to the Lyapounov exponents of (5). The proof of (6) does rely on the Aubry duality, [A-A], [La]).

Added in Proof. Concerning lattice Schrödinger operators of the form (1), related references were pointed out to the author by Y. Last. First, it is shown in the paper [L-S] that H=λcos(mρ)+Δ on ℤ has no absolutely continuous spectrum for λ > 2, ρ > 1. In fact, Theorem 1.4 from [L-S] provides an alternative proof of Proposition 4 in this paper. Other numerical and heuristic studies appear in [G-F],[B-F]. The particular case 1 < ρ < 2 was studied in [Th]. See [L-S] for further details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 52.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry S., Andre G. (1980) Analyticity breaking and Anderson localization in commensurate lattices. Ann. Israel Phys. Soc. 3:133–164

    MathSciNet  MATH  Google Scholar 

  2. Bourgain J., Goldstein M. On nonperturbative localization with quasiperiodic potential. Annals of Math., to appear

    Google Scholar 

  3. Brenner N., Fishman S. (1992) Pseudo-randomness and localization. Nonlinearity 4:211–235

    Article  MathSciNet  MATH  Google Scholar 

  4. Fröhlich J., Spencer T., Wittwer P. (1990) Localization for a class of one dimensional quasi-periodic Schrödinger operators. Comm. Math. Physics. 132:5–25

    Article  MATH  Google Scholar 

  5. Goldstein M., Schlag W. (1999) Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Preprint, to appear

    Google Scholar 

  6. Griniasty M., Fishman S. (1988) Localization by pseudorandom potentials in one dimension. Phys. Rev. Lett. 60:1334–1337

    Article  Google Scholar 

  7. Herman M. (1983) Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le charactère local d'un theoreme d'Arnold et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58(3):453–502

    Article  MathSciNet  MATH  Google Scholar 

  8. Jitomirskaya S. (1999) Metal-insulator transition for the almost Mathieu operator. Annals of Math. 150(3):1159–1175

    Article  MathSciNet  MATH  Google Scholar 

  9. Last Y. (1995) Almost everything about the Almost Mathieu operator. I XIth International Congress of Math. Physics, Intern. Press Inc, Boston, 366–372

    Google Scholar 

  10. Last Y., Simon B. (1999) Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Inventiones Math. 135:329–367

    Article  MathSciNet  MATH  Google Scholar 

  11. Sinai Y.G. (1987) Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys. 46:861–909

    Article  MathSciNet  Google Scholar 

  12. Sorets E., Spencer T. (1991) Positive Lyapounov exponents for Schrödinger operators with quasi-periodic potentials. Comm. Math. Phys. 142(3):543–566

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vitali D. Milman Gideon Schechtman

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Bourgain, J. (2000). Positive lyapounov exponents for most energies. In: Milman, V.D., Schechtman, G. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 1745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107207

Download citation

  • DOI: https://doi.org/10.1007/BFb0107207

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41070-6

  • Online ISBN: 978-3-540-45392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics