Skip to main content

Ising, heisenberg and hubbard models in relation to insulating and metallic ferro- and antiferro-magnets

  • Conference paper
  • First Online:
Theory of Spin Lattices and Lattice Gauge Models

Part of the book series: Lecture Notes in Physics ((LNP,volume 494))

  • 442 Accesses

Abstract

The Ising model in low dimensions is used for ferromagnets to relate internal energy and entropy to the magnetization. While this is done throughout the ferromagnetic phase, the low temperature predictions are compared with microscopic elementary excitations theory for both insulating and metallic ferromagnets. The model predictions are oversimplified. The spin s=1/2 Heisenberg model for an insulating antiferromagnet is then considered, starting from one dimension and building up a two-dimensional square lattice from lattice strips of variable width. Chemical approaches based an counting local spin-pairing patterns (or Kekulé structures) are brought into contact with recent work on ladders, with both even and odd numbers of legs, in the context of high-T c cuprates. Finally, the Hubbard model and the closely related t-J model are discussed. For the former, simple rules, again based on a chemical approach, are proposed for predicting the spin properties of the ground states and comparison is made with existing computer studies. The related t-J model is briefly considered in relation to carriers moving through antiferromagnetic assemblies as in the high-T c materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson P. W., Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  • Anderson P. W., Shastry B. S., and Hristopulos D., Phys. Rev. B 40, 8939 (1989).

    ADS  Google Scholar 

  • Callaway J., Quantum Theory of the Solid State (Academic, New York, 1974) p. 136.

    Google Scholar 

  • Callaway J., Chen D. P., Kanhere D. G., and Quiming Li, Phys. Rev. 42, 465 (1990).

    Article  ADS  Google Scholar 

  • Callaway J., Chen D. P., and Tang R., Phys. Rev. B 35, 3705 (1987).

    ADS  Google Scholar 

  • Dagotto E. and Rice T. M., Science 271, 618 (1996).

    Article  ADS  Google Scholar 

  • Egorov S. A. and March N. H., Phys. Chem. Liquids, 27, 195 (1994).

    Article  Google Scholar 

  • Falicov L. M. and Victora R. H., Phys. Rev. B 30, 1695 (1984).

    ADS  Google Scholar 

  • Garcia-Bach M. A. and Klein D. J., J. Phys. A: Math. Gen. 29, 103 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Grout P. J. and March N. H., Phys. Rev. B 14, 4027 (1976).

    ADS  Google Scholar 

  • Klein D. J., Schmalz T. G., Zhu H. Y., and March N. H., Paper presented at 60-years of Antiferromagnetism, College Station, Texas, 1996.

    Google Scholar 

  • Klein D. J., Schmalz T. G., Hite G. E., and Seitz W. A., Chem. Phys. Lett. 120, 367 (1985).

    Article  ADS  Google Scholar 

  • Klein D. J., Alexander S. A., Seitz W. A., Schmalz T. G., and Hite G. E., Theor. Chem. Acta 69, 393 (1986).

    Article  Google Scholar 

  • Klein D. J., Alexander S. A., and March N. H., to appear, 1997.

    Google Scholar 

  • Kohno H. and Yamada K., Prog. Theor. Phys. 85, 13 (1991).

    Article  ADS  Google Scholar 

  • March N. H., Phys. Chem. Liquids, in press.

    Google Scholar 

  • March N. H., Nip A. M. L., Tuszynski J. A., Int. J. Quantum Chemistry, Sanibel Symposium, 1997, in press.

    Google Scholar 

  • March N. H., Pucci R., and Egorov S. A., Phys. Chem. Liquids, 1996.

    Google Scholar 

  • Nagaoka Y., Phys. Rev. 147, 392 (1966).

    Article  ADS  Google Scholar 

  • Nozieres P. and Schmitt-Rink S., J. Low Temp. Phys. 59, 195 (1986).

    Article  ADS  Google Scholar 

  • Pauling L., The Nature of the Chemical Bond (Cornell University press, Ithaca, 1949); J. Chem. Phys. 1, 280 (1933).

    Google Scholar 

  • Pauling L. and Wheland G. W., J. Chem. Phys. 1, 362 (1933).

    Article  ADS  Google Scholar 

  • Qiming Li, Callaway J., and Lun Tan, Phys. Rev. B 44, 10256 (1991).

    Google Scholar 

  • Reichl L. E., A Modern Course in Statistical Physics (University of Texas Press, Austin, 1980).

    Google Scholar 

  • Tuszynski J. A. and Wierzbicki W., Am. J. Phys. 59, 555 (1991).

    Article  ADS  Google Scholar 

  • Ĺ˝ivković T. P., J. Mol. Structure 185, 169 (1989).

    Article  Google Scholar 

  • Ĺ˝ivković T. P., Sandleback B. L., Schmalz T. G., and Klein D. J., Phys. Rev. B 41, 2249 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John W. Clark Manfred L. Ristig

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

March, N.H., Klein, D.J. (1997). Ising, heisenberg and hubbard models in relation to insulating and metallic ferro- and antiferro-magnets. In: Clark, J.W., Ristig, M.L. (eds) Theory of Spin Lattices and Lattice Gauge Models. Lecture Notes in Physics, vol 494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0104299

Download citation

  • DOI: https://doi.org/10.1007/BFb0104299

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63207-8

  • Online ISBN: 978-3-540-69211-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics