Skip to main content

Rank of quantum groups and braided groups in dual form

  • I. Quantum Groups, Deformation Theory And Representation Theory
  • Conference paper
  • First Online:
Quantum Groups

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1510))

Abstract

We give a dual formulation of recent work on the representation theory of general quantum groups. These form a rigid quasitensor category C to which is associated a braided group Aut(C) of braided-commutative “co-ordinate functions” analogous to the ring of functions on a group or supergroup. Every dual quasitriangular Hopf algebra A gives rise to such a braided group A. We give the example of the braided group BSL(2) in detail. We also give the rank of quantum groups in dual form and explain its connection with the partition function of simple quantum systems.

SERC Research Fellow and Drapers Fellow of Pembroke College, Cambridge

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.Majid, Reconstruction Theorems and rational conformal field theories, to appear Int.J.Mod. Phys.A. (1989).

    Google Scholar 

  2. S.Majid, Braided group and algebraic quantum field theories, Preprint (1990); Some physical applications of category theory, Lec. Notes Phys., Springer (to appear).

    Google Scholar 

  3. S. Majid, Quasitriangular Hopf algebras and Yang-Baxter Equations, Int. J. Modern Physics A 5(1) (1990), 1–91.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Majid, Representation theoretic rank and double Hopf algebras, Comm. Algebra 18 (1990); 3705–3712.

    Article  MathSciNet  MATH  Google Scholar 

  5. S.Majid and Ya.S. Soibelman, Rank of quantized universal enveloping algebras and modular functions, to appear Comm. Math. Phys. (1990).

    Google Scholar 

  6. S.Majid and Ya.S. Soibelman, Chern-Simons theory, modular functions and quantum mechanics in an alcove, to appear Int. J. Math. Phys. (1990).

    Google Scholar 

  7. L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra Anal. 1(1) (1989), 178–206.

    MathSciNet  Google Scholar 

  8. N.Yu. Reshetikhin, V.G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.Joyal and R.Street, Braided monoidal categories, Macquarie Reports 86008 (1986).

    Google Scholar 

  10. P.Deligne and J.S.Milne, Tannakian categories, Lec. Notes in Math. 900 Springer (1982).

    Google Scholar 

  11. V.G. Drinfeld, Quantum groups, Proc. ICM-86(Berkeley) 1 (1987), 798–820.

    MathSciNet  Google Scholar 

  12. S.Majid, Quantum groups and quantum probability, to appear in Quantum probability and Applications, Trento, Kluwer (1989).

    Google Scholar 

  13. S.Majid, Representations, duals and quantum doubles of monoidal categories, to appear in Suppl. Rend. Circ. Mat. Palermo (1989).

    Google Scholar 

  14. S.Majid, Braided groups, Preprint (1990).

    Google Scholar 

  15. N.Saavedra Rivano, Catégories Tannakiennes, Lec. Notes in Math. 265 Springer (1972).

    Google Scholar 

  16. D. Yetter, Quantum groups and representations of monoidal categories, Math Proc. Cam. Phil. Soc. 108 (1990), 261–290.

    Article  MathSciNet  MATH  Google Scholar 

  17. K.-H.Ulbrich, On Hopf algebras and rigid monoidal categories, to appear Isr. J. Math. (1989).

    Google Scholar 

  18. K.Fredenhagen, K.-H.Rehren, B.Schroer, On Hopf algebras and rigid monoidal categories, Comm. Math.Phys. 125, 201. R.Longo, Comm. Math.Phys. 126 (1989), 217.

    Google Scholar 

  19. S. Doplicher and J.E. Roberts, A new duality theorem for compact groups, Inv. Math.Phys. 985 (1989), 157–218.

    Article  MathSciNet  MATH  Google Scholar 

  20. S.Majid, Examples of braided groups and braided matrices, Preprint (1990).

    Google Scholar 

  21. A.Connes, Non-commutative differential geometry, IHES 62 (1986).

    Google Scholar 

  22. N.Ya.Manin, Noncommutative geometry and quantum groups, Monthreal Notes (1988). A.Rozenberg, Hopf algebras and Lie algebras in categories with multiplication, preprint (1978). (in Russian) D.Gurevich, Stockholm Math. Rep. 24 (1986), 33–122 25 (1988), 1–16.

    Google Scholar 

  23. P.P.Kulish, Quantum superalgebra osp(2 1), preprint RIMS-615 (1988). M.Chaichan and P.P.Kulish, Phys.Lett.B 234 (1990), 72–80.

    Google Scholar 

  24. S.Majid, More examples of double cross product Hopf algebras, Isr.J.Math. 71(3) (1990).

    Google Scholar 

  25. V.V.Lyubashenko, Tensor categories and RCFT,I,II, preprints (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petr P. Kulish

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Majid, S. (1992). Rank of quantum groups and braided groups in dual form. In: Kulish, P.P. (eds) Quantum Groups. Lecture Notes in Mathematics, vol 1510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0101180

Download citation

  • DOI: https://doi.org/10.1007/BFb0101180

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55305-2

  • Online ISBN: 978-3-540-47020-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics