Skip to main content

Spectral analysis and synthesis

  • Chapter
  • First Online:
Linear and Complex Analysis Problem Book 3

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1574))

  • 924 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waelbroeck L., Étude spectrale des algèbres complètes, Acad. Royale Belg. Mém. Cl. Sci. 2 (1960), 31.

    MATH  Google Scholar 

  2. Hörmander L., L 2-estimates and existence theorems for the H , Acta Math. 113 (1965), 85–152.

    Article  Google Scholar 

  3. Hörmander L., An Introduction to Complex Analysis in Several Variables, Van Nostrand, New York, 1966.

    MATH  Google Scholar 

  4. Hörmander L., Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943–949.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cnop I., Spectral study of holomorphic functions with bounded growth, Ann. Inst. Fourier 22 (1972), 293–309.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ferrier J.-P., Approximation des fonctions holomorphes de plusiers variables avec croissance, Ann. Inst. Fourier 22 (1972), 67–87.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferrier J.-P., Spectral Theory and Complex Analysis, North Holland Math. Stud., vol. 4, North Holland, Amsterdam, 1973.

    MATH  Google Scholar 

References

  1. Malgrange B., Sur les systèmes differentiel à coefficients constants, Coll. Int. CNRS, Paris, 1963.

    Google Scholar 

  2. Palamodov V. P., Linear differential operators with constant coefficients, “Nauka”, Moscow, 1967. (Russian)

    MATH  Google Scholar 

  3. Palamodov V. P., A complex of holomorphic waves, Trudy Sem. Petrovsk. (1975) no. 1, 177–210. (Russian)

    MathSciNet  MATH  Google Scholar 

  4. Dufresnoy A., Un résultat de d″-cohomologie; applications aux systèmes differentiel à coefficients constants, Ann. Inst. Fourier 27 (1977), no. 2, 125–143.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hörmander L., Linear Partial Differential Operators, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

    Book  MATH  Google Scholar 

References

  1. Schwartz L., Théorie générale des fonctions moyenne-périodiques, Ann. Math. 48 (1947), no. 4, 857–925.

    Article  MATH  Google Scholar 

  2. Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–487 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500; II., Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.

    MathSciNet  Google Scholar 

  3. Malgrange, B., Existence at approximation des solution des équations aux derivées partielles et des équations de convolution, Ann. Inst. Fourier 6 (1955), 271–354.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ehrenpreis L., Mean periodic functions, Amer. J. Math. 77 (1955), no. 2, 293–328.

    Article  MathSciNet  MATH  Google Scholar 

  5. Napalkov V. V., On subspaces of analytic functions invariant relative to a shift, Izv. Akad. Nauk SSSR, ser. matem. 36 (1972), 1269–1281 (Russian); English transl. in Math. USSR Izvestija 6 (1972), no. 6, 1251–1264.

    MathSciNet  MATH  Google Scholar 

  6. Napalkov V. V., On equation of convolution type in tube domains of2, Izv. Akad. Nauk SSSR, ser. matem. 38 (1974), 446–456 (Russian); English transl. in Math. USSR Izvestija 8 (1974), no. 2, 452–464.

    MathSciNet  Google Scholar 

  7. Trutnev V. M., On convolution equations in convex domains ofn, Topics in mathematics, (Voprosy matematiki), vol. 510, Tashkent State University, 1976, pp. 148–150. (Russian)

    Google Scholar 

  8. Martineau A., Sur la notion d’ensemble fortement linéellement convexe, Ann. Acad. Brasil., Ciens. 40 (1968), no. 4, 427–435.

    MathSciNet  MATH  Google Scholar 

  9. Pinčuk S. I., On the existence of holomorphic primitives, Dokl. Akad. Nauk SSSR 204 (1972), no. 2, 292–294 (Russian); English transl. in Soviet Math. Doklady 13 (1972), no. 3, 654–657.

    MathSciNet  MATH  Google Scholar 

References

  1. Gurevič D. I., Counterexample to a problem of L. Schwartz, Functs. Anal. Prilozhen. 9 (1975), no. 2, 29–35 (Russian); English transl. in Funct. Anal. Appl. 9 (1975), no. 2, 116–120.

    Google Scholar 

  2. Momm S., Convex univalent functions and continuous linear inverses, Preprint 20pp., 1992, Univ. of Düsseldorf (Germany).

    Google Scholar 

References

  1. Nikol’skii N. K., Selected problems of weighted approximation and spectral analysis, Trudy Mat. Inst. Steklov 120 (1974) (Russian); English transl. in Proc. Steklov Inst. Math. 120 (1974).

    Google Scholar 

  2. Krasichkov-Ternovskii I. F., A homogeneous equation of convolution type on convex domains. Dokl. Acad. Nauk SSSR 197 (1971), 29–31 (Russian); English transl. in Soviet Math. Dokl. 12 (1971), no. 1, 396–398.

    Google Scholar 

  3. Schwartz L., Théorie générale des fonctions moyenne-périodiques, Ann. Math. 48 (1947), no. 4, 857–929.

    Article  MATH  Google Scholar 

  4. Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–488 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500.

    MathSciNet  Google Scholar 

  5. Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. II. Spectral synthesis on convex domains, Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.

    MathSciNet  Google Scholar 

  6. Cartan H., Idéaux et modules de fonctions analytiques de variables complexes, Bull. Soc. Math. France 78 (1950), no. 1, 29–64.

    MathSciNet  MATH  Google Scholar 

  7. Kelleher J. J., Taylor B. A., Closed ideals in locally convex algebras of analytic functions, J. reine und angew. Math. 225 (1972), 190–209.

    MathSciNet  MATH  Google Scholar 

  8. Krasichkov-Ternovskii I. F., An estimate for subharmonic difference of subharmonic functions I, Mat. Sb. 102 (1977), no. 2, 216–247 (Russian); English transl. in Math. USSR. Sb. 31 (1977).

    MathSciNet  Google Scholar 

  9. Krasichkov-Ternovskii I. F., An estimate for subharmonic difference of subharmonic functions II, Mat. Sb. 103 (1977), no. 1, 69–111 (Russian); English transl. in Math. USSR Sb. 32 (1977).

    MathSciNet  Google Scholar 

  10. Raševskii P. K., Closed ideals in a countably-normed algebra of entire analytic functions, Dokl. Akad. Nauk SSSR 162 (1965), 513–515 (Russian); English transl. in Soviet Math. Dokl. 6 (1965), 717.

    MathSciNet  Google Scholar 

  11. Krasičkov I. F., Closed ideals in locallyconvex algebras of entire functions. I, II, Izv. Akad. Nauk SSSR, ser. matem. 31 (1967), 37–60 (Russian); English transl. in Math. USSR Izvestija. 31 (1967), 35–55; Izv. Akad. Nauk SSSR, ser. matem. 32 (1968), 1024–1032 (Russian); English transl. in Math. USSR Izvestija 32 (1968), 979–986.

    Google Scholar 

  12. Matsaev V. I., Mogul’skii E. Z., Completeness of weak perturbations of self-adjoint operators, Zap. Nauchn. Sem. LOMI 56 (1976), 90–103 (Russian); English transl. in J. Soviet Math. 14 (1980), no. 2, 1093–1103.

    Google Scholar 

  13. Krasichkov-Ternovskii I. F., Local description of closed ideals and submodules of analytic functions of one complex variable. I and II, Izvestiya AN SSSR, ser. matem. 43 (1979), no. 1, 44–66; and 43 (1979), no. 2, 309–341. (Russian)

    MathSciNet  Google Scholar 

References

  1. Nikol’skii N. K., Invariant subspaces in operator theory and function theory, Itogi Nauki i Tekhniki: Mat. Anal. 12 (1974), 199–412, VINITI, Moscow (Russian); English transl. in J. Soviet Math. 5 (1976), no. 2.

    Google Scholar 

  2. Schwartz L., Théorie générale des fonctions moyenne-périodiques, Ann. Math. 48 (1947), no. 4, 857–929.

    Article  MATH  Google Scholar 

  3. Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–487 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500; II., Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.

    MathSciNet  Google Scholar 

  4. Tkachenko V. A., On spectral synthesis in spaces of analytic functionals, Dokl. Akad. Nauk SSSR 223 (1975), no. 2, 307–309 (Russian); English transl. in Soviet Math. Doklady 16 (1975), no. 4, 895–898.

    MathSciNet  MATH  Google Scholar 

References

  1. Ehrenpreis L., Mean periodic functions. I. Varieties whose annihilator ideals are principal, Amer. J. Math. XX (1955), 293–328.

    Article  MathSciNet  MATH  Google Scholar 

  2. Krasichkov-Ternovskiî I. F., Shishkin A. B., Spectral synthesis for a multiple differentiation operator, Soviet Math. Dokl. 40 (1990), no. 1, 16–19.

    MathSciNet  MATH  Google Scholar 

  3. Krasichkov-Ternovskiî I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–487 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500; II., Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.

    MathSciNet  Google Scholar 

  4. Merzlyakov S. G., Invariant subspaces of a multiple differentiation operator, Mat. Zametki 33 (1983), 701–713. (Russian)

    MathSciNet  MATH  Google Scholar 

  5. Merzlyakov S. G., On subspaces of analytical functions invariant under multiple differentiation operator, Mat. Zametki 40 (1986), 635–639. (Russian)

    MathSciNet  Google Scholar 

References

  1. Braun R. W., Meise R., Generalized Fourier expansions for zero-solutions of surjective convolution operators on D{ω}(ℝ)′, Arch. Math. 55 (1990), 55–63.

    Article  MathSciNet  MATH  Google Scholar 

  2. Braun R. W., Meise R., Taylor B. A., Ultradifferentiable functions and Fourier analysis, Result. Math. 17 (1990), 206–237.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein C. A., Taylor B. A., A new look at interpolation theory for entire functions of one variable, Adv. Math. 33 (1979), 109–143.

    Article  MathSciNet  MATH  Google Scholar 

  4. Franken U., Meise R., Generalized Fourier expansions for zero solutions of surjective convolution operators on D′(ℝ) and D′{ω}(ℝ), Note di Mat. (to appear).

    Google Scholar 

  5. Meise R., Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals. J. Reine Angew. Math. 363 (1985), 59–95.

    MathSciNet  MATH  Google Scholar 

  6. Meise R., Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, Studia Math. 92 (1989), 211–230.

    MathSciNet  MATH  Google Scholar 

  7. Meise R., Momm S., Taylor B. A., Splitting of slowly decreasing ideals in weighted algebras of entire functions, in Complex Analysis II LNM (C. A. Berenstein, ed.), vol. 1276, Springer, Berlin, 1987, pp. 229–252.

    Chapter  Google Scholar 

  8. Meise R., Schwerdtfeger K., Taylor B. A., Kernels of slowly decreasing convolution operators, Doga Tr. J. Math. 10 (1986), 176–197.

    MathSciNet  MATH  Google Scholar 

  9. Meise R., Taylor B. A., Vogt D., Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729–756.

    Article  MathSciNet  MATH  Google Scholar 

  10. Momm S., Closed principal ideals in nonradial Hörmander algebras, Arch. Math (to appear).

    Google Scholar 

  11. Momm S., Convolution equations on the analytic functions on convex domains in the plane, preprint (1991).

    Google Scholar 

  12. Napalkov V. V., A basis in the space of solutions of a convolution equation, Math. Notes Acad. Sci. USSR 43 (1988), 27–33.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Berenstein C. A., Kawai T., Struppa D. C., in preparation.

    Google Scholar 

  2. Berenstein C. A., Struppa D. C., On explicit solutions to the Bezout equation, Systems and Control Lett. 4 (1984), 33–39.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein C. A., Struppa D. C., 1-inverses of polynomial matrices of non-constant rank, Systems and Control Lett. 6 (1986), 309–314.

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein C. A., Struppa D. C., On the Fabry-Ehrenpreis-Kawai gap theorem, Publ. RIMS Kyoto Univ. 23 (1987), 565–574.

    Article  MathSciNet  MATH  Google Scholar 

  5. Berenstein C. A., Struppa D. C., Dirichlet series and convolution equations, Publ. RIMS Kyoto Univ. 24 (1988), 783–810.

    Article  MathSciNet  MATH  Google Scholar 

  6. Berenstein C. A., Struppa D. C., Convolution equations and complex analysis, Contemporary Problems in Mathematics, Fundamental Directions, vol. 5, pp. 5–110. (Russian)

    Google Scholar 

  7. Berenstein C. A., Yger A., Effective Bezout identities in ℚ[z 1,...,z n], Acta Math. 166 69–120.

    Google Scholar 

  8. Bernstein V., Series de Dirichlet, Paris, 1933.

    Google Scholar 

  9. Brownawell D. W., Distance to common zeros and lower bounds for polynomials, preprint.

    Google Scholar 

  10. Ehrenpreis L., Fourier Analysis in Several Complex Variables, New York, 1970.

    Google Scholar 

  11. Neyman R., Interpolation of entire functions of infinite order, Ph.D. Thesis, Univ. of Maryland, 1990.

    Google Scholar 

  12. Kawai T., The Fabry-Ehrenpreis gap theorem and linear differential equations of infinite order, Am. J. Math. 109 (1987), 57–64.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lech C., A metric result about the zeros of a complex polynomial ideal, Ark. Math. 52 (1958), 543–554.

    Article  MathSciNet  MATH  Google Scholar 

  14. Mandelbrojt S., Dirichlet Series, Dordrecht, 1972.

    Google Scholar 

References

  1. Berenstein C.A., Taylor B.A., Interpolation problems inn with applications to harmonic analysis, J. Analyse Math. 38 (1980), 188–254.

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenstein C. A., Gay R., Yger A., Analytic continuation of currents and division problems, Forum Math. 1 (1989), 15–51.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein C.A., Yger A., Formules de représentation intégrale et problèmes de division. Diophantine Approximations and Transcendental Numbers. (P. Phillippon, ed.), Luminy 1990, Walter de Gruyter, Berlin, 1992, pp. 15–37.

    Google Scholar 

  4. Berenstein C. A., Yger A., Exponential polynomials and D-modules (to appear).

    Google Scholar 

  5. Berenstein C. A., Yger A., Ideals generated by exponential polynomials, Advances in Math. 60 (1986), 1–80.

    Article  MathSciNet  MATH  Google Scholar 

  6. Berenstein C. A., Yger A., On Lojasiewicz inequalities for exponential polynomials, J. Math. Anal. Applications 129 (1988), 166–195.

    Article  MathSciNet  MATH  Google Scholar 

  7. Briançon J., Skoda H., Sur la clôture intégrade d’un idéal de germes de fonctions holomorphes en un point den, Comptes Rendus Acad. Sci. Paris, ser. A 278 (1974), 949–951.

    MATH  Google Scholar 

  8. Ehrenpreis L., Fourier Analysis in several Complex variables, Wiley Interscience, New York, 1970.

    MATH  Google Scholar 

References

  1. Carleson L., The corona theorem, Proc. 15th Scandinavian Congress, Lect. Notes in Math., vol. 118, Springer-Verlag, 1970, pp. 121–132.

    MathSciNet  MATH  Google Scholar 

  2. Garnett J., Bounded Analytic Functions, Academic Press, New York, 1981.

    MATH  Google Scholar 

References

  1. Tolokonnikov V. A., Estimates in the Carleson corona theorem, ideals of the algebra H, a problem of Sz.-Nagy, Zap. Nauchn. Sem. LOMI 113 (1981), 178–198 (Russian); English transl. in J. Soviet Math. 22 (1983), 1814–1828.

    MathSciNet  MATH  Google Scholar 

  2. Tolokonnikov V. A., Interpolating Blaschke products and the ideals of the algebra H, Zap. Nauchn. Sem. LOMI 126 (1983), 196–201 (Russian); English transl. in J. Soviet Math. 27 (1984), 2549–2553.

    MathSciNet  MATH  Google Scholar 

  3. Tolokonnikov V. A., The corona theorem in algebras of bounded analytic functions, VINITI (1984), no. 251-84DEP, 1–61 (Russian); English transl. in Amer. Math. Soc. Transl. 149 (1991), no. 2, 61–95.

    Google Scholar 

References

  1. Nikol’skii N. K., Invariant subspaces in operator theory and function theory, Itogi Nauki i Tekhniki:Mat. Anal. 12 (1974), 199–412, VINITI, Moscow (Russian); English transl. in J. Soviet Math. 5 (1976), no. 2.

    Google Scholar 

  2. Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. II. Spectral synthesis on convex domains, Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.

    MathSciNet  Google Scholar 

  3. Nikol’skii N. K., Selected problems of weighted approximation and spectral analysis, Trudy Mat. Inst. Steklov 120 (1974) (Russian); English transl. in Proc. Steklov Inst. Math. 120 (1974).

    Google Scholar 

  4. Korenbljum B., A Beurling-type theorem, Acta Math. 135 (1975), 187–219.

    Article  MathSciNet  Google Scholar 

  5. Apresyan S. A., A description of the algebra of analytic functions admitting localization of ideals, Zap. Nauchn. Sem. LOMI 70 (1977), 267–269 (Russian); English transl. in J. Soviet Math. 23 (1983), no. 1, 2091–2093.

    MATH  Google Scholar 

  6. Nikol’skii N. K., The technique of using a quotient operator for the localization of z-invariant subspaces, Dokl. Acad. Nauk SSSR 240 (1978), no. 1, 24–27 (Russian); English transl. in Soviet Math. Dokl. 19 (1978), no. 3, 545–549.

    Google Scholar 

  7. Gribov M. B., Nikolskii N. K., Invariant subspaces and rational approximation, Zap. Nauchn. Sem. LOMI 92 (1979), 103–114. (Russian)

    MathSciNet  MATH  Google Scholar 

  8. Nikolskii N. K., Lectures on the shift operator. I, Zap. Nauchn. Sem. LOMI 39 (1974), 59–93 (Russian); English transl. in J. Soviet Math. 8 (1977), no. 1.

    MathSciNet  Google Scholar 

  9. Hilden H. M., Wallen L. J., Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1974), no. 7, 557–565.

    Article  MathSciNet  MATH  Google Scholar 

  10. Shamoyan F. A., Division theorems and closed ideals in algebras of analytic functions with a majorant of finite growth, Izv. Akad. Nauk Arm.SSR, Matematika 15 (1980), no. 4, 323–331. (Russian)

    MathSciNet  MATH  Google Scholar 

References

  1. Frankfurt R., Subnormal weighted shifts and related function spaces, J. Math. Anal. Appl. 52 (1975), 471–489.

    Article  MathSciNet  MATH  Google Scholar 

  2. Frankfurt R., Subnormal weighted shifts and related function spaces. II, J. Math. Anal. Appl. 55 (1976), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  3. Frankfurt R., Function spaces associated with radially symmetric measures, J. Math. Anal. Appl. 60 (1977), 502–541.

    Article  MathSciNet  MATH  Google Scholar 

  4. Beurling A., On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239–255.

    Article  MathSciNet  MATH  Google Scholar 

  5. Shapiro H. S., Weakly invertible elements in certain function spaces, and generators of1, Mich. Math. J. 11 (1964), 161–165.

    Article  MathSciNet  MATH  Google Scholar 

  6. Shapiro H. S., Weighted polynomial approximation and boundary behaviour of analytic functions, Modern problems of the theory of analytic functions, Nauka, Moscow, 1966, pp. 326–335.

    Google Scholar 

  7. Shapiro G., Some observations concerning weighted polynomial approximation of holomorphic functions, Matem. Sbornik 73 (1967), no. 3, 320–330. (Russian)

    MathSciNet  Google Scholar 

  8. Mergeljan S. N., On completeness of a system of analytic functions, Uspekhi Matem. Nauk 8 (1953), no. 4, 3–63. (Russian)

    Google Scholar 

  9. Aharonov D., Shapiro H. S., Shields A. L., Weakly invertible elements in the space of square-summable holomorphic functions, J. London Math. Soc. 9 (1974), 183–192.

    Article  MathSciNet  MATH  Google Scholar 

  10. Shields A. L., Weighted shift operators and analytic function theory, Topics in Operator Theory, Amer. Math. Soc., Providence, R. I., 1974, pp. 49–128.

    MATH  Google Scholar 

  11. Brennan J., Invariant subspaces and weighted polynomial approximation, Ark. Mat. 11 (1973), 167–189.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hedberg L. I., Weighted mean approximation in Caratheodory regions, Math. Scand. 23 (1968), 113–122.

    MathSciNet  MATH  Google Scholar 

  13. Horowitz C., Zeros of functions in the Bergman spaces, Duke Math. J. 41 (1974), 693–710.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Korenblum B., An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187–219.

    Article  MathSciNet  MATH  Google Scholar 

  2. Korenblum B., A Beurling-type theorem, Acta Math. 138 (1977), 265–293.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Hedenmalm H., Shields A., Invariant subspaces in Banach spaces of analytic functions, Michigan Math. J. 37 (1990), 91–104.

    Article  MathSciNet  MATH  Google Scholar 

  2. Shields A., Cyclic vectors in Banach spaces of analytic functions, Operators and Function Theory (S. Power, ed.), 1984, pp. 315–350.

    Google Scholar 

  3. Korenblum B., Outer functions and cyclic elements in Bergman spaces, J. Funct. Anal. 115 (1993), 104–118.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Shapiro Harold S., Weakly invertible elements in certain function spaces, and generators in1, Mich. Math. J. 11 (1964), 161–165.

    Article  MathSciNet  Google Scholar 

  2. Shapiro Harold S., Weighted polynomial approximation and boundary behaviour of holomorphic functions, Contemporary problems of analytic function theory, Nauka, Moscow, 1966, pp. 326–335.

    Google Scholar 

  3. Shapiro H., Some remarks on weighted polynomial approximation of holomorphic functions, Mat. Sbornik 73 (1967), 320–330.

    Google Scholar 

  4. Aharonov D., Shapiro H. S., Shields A. L., Weakly invertible elements in the space of square-summable holomorphic functions, J. London Math. Soc. 9 (1974), 183–192.

    Article  MathSciNet  MATH  Google Scholar 

  5. Carleson L., Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325–345.

    Article  MathSciNet  MATH  Google Scholar 

  6. Duren P. L., Romberg B. W., Shields A. L., Linear functionals on Hp spaces with 0<p<1, J. für Reine und Angew. Math. 238 (1969), 32–60.

    MathSciNet  MATH  Google Scholar 

  7. Nikolskii N. K., Spectral synthesis and weighted approximation problem in spaces of analytic functions, Izv. AN Arm. SSR. Ser. Matem. 6 (1971), no. 5, 345–367. (Russian)

    Google Scholar 

  8. Shields Allen L., Weighted shift operators and analytic function theory, Topics in operator theory, vol. 13, Amer. Math. Soc., Providence, 1974, pp. 49–128.

    MATH  Google Scholar 

  9. Shields Allen L., Cyclic vectors in some spaces of analytic functions, Proc. Royal Irish Acad. 74, Section A (1974), 293–296.

    MathSciNet  MATH  Google Scholar 

References

  1. Shamoyan F. A., Weak invertibility in some spaces of analytic functions, Dokl. AN Arm. SSR 74 (1982), no. 4, 157–161.

    MathSciNet  MATH  Google Scholar 

  2. Korenblum B., Cyclic elements in some spaces of analytic functions, Bull. Amer. Math. Soc. 5 (1981), no. 3, 317–318.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Aleksandrov A. B., Approximation by rational functions and an analog of the M. Riesz theorem on conjugate functions for Lp-spaces with p∈(0, 1) Math. USSR Sbornik 35 (1979), 301–316.

    Article  MATH  Google Scholar 

  2. Aleksandrov A. B., Invariant subspaces of the backward shift operator in the space Hp (p∈(0, 1), Zapiski nauchn. semin. LOMI 92 (1979), 7–29 (Russian)

    MATH  Google Scholar 

  3. Aleksandrov A. B., On the A-integrability of boundary values of harmonic functions, Matem. zametki 30 (1981), no. 1, 59–72. (Russian)

    MathSciNet  MATH  Google Scholar 

  4. Aleksandrov A. B., Essays on non locally convex Hardy classes, Lect. Notes Math. 864 (1981), 1–89.

    Article  MATH  Google Scholar 

  5. Aleksandrov A. B., Invariant subspaces of the shift operators. Axiomatic approach, Zapiski nauchn. semin. LOMI 113 (1981), 7–26 (Russian); English transl in J. Soviet Math. 22 (1983), no. 6, 1695–1708.

    MathSciNet  MATH  Google Scholar 

  6. Coifman R. R., A real variable characterization of Hp, Studia Math. 51 (1974), no. 3, 269–274.

    MathSciNet  MATH  Google Scholar 

  7. Nikolskii N. K., Treatise of the Shift Operator, Springer-Verlag, 1986.

    Google Scholar 

References

  1. Gelfand I. M., Raikov D. A., Shilov G. E., Commutative Normed Rings, Phys.-Math., Moscow, 1960. (Russian)

    Google Scholar 

  2. Wiener N., Fourier Integral and some its Applications, Phys.-Math., Moscow, 1963. (Russian)

    Google Scholar 

  3. Beurling A., Sur les integrales de Fourier absolument convergentes et leur application a une transformation fonctionelle, Congres des Math. Scand., Helsingfors, 1938.

    Google Scholar 

  4. Nyman B., On the one-dimensional translations group and semi-group in certain function spaces, Thesis, Uppsala, 1950.

    Google Scholar 

  5. Korenblum B. I., Generalization of Tauber’s Wiener’s theorem and harmonic analysis of quickly growing functions, Trudy Moskovskogo mat. ob-va 7 (1958), 121–148. (Russian)

    Google Scholar 

  6. Vretblad A., Spectral analysis in weighted L 1-spaces on ℝ, Ark. Math. 11 (1973), 109–138.

    Article  MathSciNet  MATH  Google Scholar 

  7. Djarbashyan M. M., Uniqueness theorems for Fourier transforms and for infinitely differentiable functions, Izv. AN Arm. SSR ser.f.-m. nauk 10 (1957), no. 6, 7–24. (Russian)

    MathSciNet  Google Scholar 

  8. Babenko K. I., About some classes of infinitely differentiable function’s spaces, Dokl. AN USSR 132 (1960), no. 6, 1231–1234. (Russian)

    MathSciNet  Google Scholar 

  9. Gurarii V. P., Levin B. Ya., About completeness of system of shifts in the space L (0, ∞) with weight, Zap. mekh.-mat. facult. KhGY and KhMO 30 (1964), no. 4, 178–185. (Russian)

    MathSciNet  Google Scholar 

  10. Gurarii V. P., Harmonic analysis in the spaces with weight, Trudy Mosk. mat. ob-va 35 (1976), 21–76. (Russian)

    MathSciNet  Google Scholar 

References

  1. Borichev A., Hedenmalm H., Completeness of translates in weighted Hilbert spaces on the half-line, Centre de recerca matemàtica, Barcelona, Preprint No. 196 (1993).

    Google Scholar 

  2. Borichev A., Hedenmalm H., Completeness of translates in weighted Lp spaces on the half-line, Uppsala University, Dept. of Math. Report (1993).

    Google Scholar 

References

  1. Styf B., Closed translation invariant subspaces in a Banach space of sequences, summable with weights, Uppsala University, Dept. of Math., Report 3 (1977).

    Google Scholar 

  2. Nikolskii N. K., About invariant subspaces of weighted shift operators, Matem. Sbornik 74 (1967), no. 2, 171–190 (Russian); English transl. in Math. USSR Sbornik 74(116) (1967), 172–190.

    Google Scholar 

  3. Nyman B., On the one-dimensional translation group and semi-group in certain function spaces, Uppsala, 1950.

    Google Scholar 

  4. Gurarii V. P., Spectral synthesis of bounded functions on a half-axis, Funktsional. Anal. i Prilozhen. 3 (1969), no. 4, 34–48 (Russian); English transl. in Funct. Anal. Appl. 3 (1969), no. 4, 282–294.

    MathSciNet  Google Scholar 

References

  1. Domar Y., Cyclic elements under translation in weighted L1 spaces on ℝ+, Ark. mat. 19 (1981), no. 1, 137–144.

    Article  MathSciNet  MATH  Google Scholar 

  2. Domar Y., Extensions of the Titchmarsh convolution theorem with applications in the theory of invariant subspaces, Proc. London Math. Soc. 46 (1983), no. 3, 288–300.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachar J. M., Bade W. G., Curtis P. C. Jr., Dales H. G., Thomas M. P. (eds.), Radical Banach algebras and automatic continuity, Proceedings, Long Beach 1981, Lect. Notes in Math., vol. 975, 1983.

    Google Scholar 

References

  1. Domar Y., Convolution theorems of Titchmarsh type on discreten, Proc. Edinburg Math. Soc. 32 (1989), 449–457.

    Article  MathSciNet  MATH  Google Scholar 

  2. Borichev A. A., A Titchmarsh-type convolution theorem on the group ℤ, Arkiv för matematik 27 (1989), 179–187.

    Article  MathSciNet  MATH  Google Scholar 

  3. Borichev A. A., The generalized Fourier transformation, Titchmarsh’s theorem and asymptotically holomorphic functions, Leningrad Math. J., 1 (1990), 825–857.

    MathSciNet  Google Scholar 

References

  1. Gurarii V. P., Spectral synthesis of bounded functions on half-axe, Funkts. Anal. i Prilozh. 3 (1969), no. 4, 34–48. (Russian)

    MathSciNet  Google Scholar 

  2. Gurarii V. P., Harmonic analysis in the spaces with weight, Trudy Mosk. mat. ob-va 35 (1976), 21–76. (Russian)

    MathSciNet  Google Scholar 

References

  1. Kahane J.-P., Séries de Fourier absolument convergentes, Springer, 1970.

    Google Scholar 

  2. Dyn’kin E. M., Wiener-Levy type theorems and estimates for Wiener-Hopf operators, Matem. issled. 8, (1973), no. 3, 14–25. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Kahane J.-P., Une nouvelle réciproque du théorème de Wiener-Lévy, C. R. Acad. Sci. Paris 264 (1967), 104–106.

    MathSciNet  MATH  Google Scholar 

References

  1. Atzmon A., Spectral synthesis in regular Banach algebras, Israel J. Math. 8 (1970), no. 3, 197–212.

    Article  MathSciNet  MATH  Google Scholar 

Bibliographie

  1. Rudin W., Fourier Analysis on Groups, Interscience, N. Y., 1962.

    MATH  Google Scholar 

  2. Kahane J.-P., Idempotents and closed subalgebras of L 1 (\(\mathbb{T}\)), in: Funct. algebras, Proc. Intern. Symp. Tulane Univ. (T. Birtel, ed.), Scott-Forestmann, Chicago, 1966, pp. 198–207.

    Google Scholar 

Bibliographie

  1. Rider D., Closed subalgebras of L 1 (\(\mathbb{T}\)), Duke Math. J. 36 (1969), no. 1, 105–115.

    Article  MathSciNet  MATH  Google Scholar 

  2. Oberlin D. M., An approximation problem in Lp[0, 2π], 2<p<∞, Studia Math. 70 (1981), no. 3, 221–224.

    MathSciNet  Google Scholar 

  3. Bachelis G. F., Gilbert J. E., Banach algebras with rider subalgebras, Bull. Inst. Math. Acad. Sinica 7 (1979), no. 3, 333–347.

    MathSciNet  MATH  Google Scholar 

References

  1. Grabiner S., Weighted shifts and Banach algebras of power series, American. J. Math 97 (1975), 16–42.

    Article  MathSciNet  MATH  Google Scholar 

  2. Gronbaek N., Weighted discrete convolution algebras, “Radical Banach Algebras and Automatic Continuity”, Proceedings, Lect. Notes Math., vol. 975, 1981.

    Google Scholar 

  3. Söderberg D., Generators in radical weighted1, Uppsala University Department of Mathematics Report 9 (1981).

    Google Scholar 

  4. Thomas M. P., Approximation in the radical algebra1 (w n) when {w n} is star-shaped, Radical Banach Algebras and Automatic Continuity, Proceedings, Lect. Notes in Math., vol. 975.

    Google Scholar 

  5. Thomas M. P., A non-standard closed subalgebra of radical Banach algebra of power series, J. London Math. Soc. 29 (1984), 153–163.

    Article  MathSciNet  MATH  Google Scholar 

  6. Thomas M. P., A non-standard closed ideal of a radical Banach algebra of power series, Bull. Amer. Math. Soc. 9 (1983), 331–333.

    Article  MathSciNet  Google Scholar 

References

  1. Esterle J., Elements for a classification of commutative radical algebras, Radical Banach Algebras and Automatic Continuity, Proceedings, Lect. Notes in Math., vol. 975, pp. 1–62.

    Google Scholar 

References

  1. Nyman B., On the one-dimension translation group and semi-group in certain function spaces, Uppsala, 1950.

    Google Scholar 

  2. Gurarii V. P., Levin B. Ya., About completeness of the system of the shifts in the space ß(0, ∞) with weight, Zap. Khark. mat. ob-va 30 (1960), no. 4 (Russian)

    Google Scholar 

References

  1. Hedenmalm H., Translates of functions of two variables, Duke Math. J. 58 (1989), 251–297.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hedenmalm H., Outer functions of several complex variables, J. Funct. Anal. 80 (1988), 9–15.

    Article  MathSciNet  MATH  Google Scholar 

Reference

  1. Helson, H., Lectures on Invariant Subspaces, Academic Press, NY-London, 1964.

    MATH  Google Scholar 

References

  1. Shamoyan F. A., The structure of closed ideals in certain algebras of functions analytic in the disk and smooth up to the boundary, Dokl. Akad. Nauk Arm. SSR 60 (1975), no. 3, 133–136. (Russian)

    Google Scholar 

  2. Shamoyan, F. A., Construction of a certain special sequence, and the structure of closed ideals in certain algebras of analytic functions, Izv. Akad. Nauk Arm. SSR 7 (1972), no. 6, 440–470. (Russian)

    MathSciNet  Google Scholar 

  3. Rudin W., Function Theory in Polydiscs, Benjamin, New York, 1969.

    MATH  Google Scholar 

  4. Horowitz, C., Oberlin D., Restrictions of functions to diagonal of \(\mathbb{D}^2\), Indiana Univ. Math. J. 24 (1975), no. 7, 767–772.

    Article  MathSciNet  MATH  Google Scholar 

  5. Shamoyan F. A., A theorem on imbedding in spaces of n-harmonic functions, and some applications, Dokl. Akad. Nauk Arm. SSR 62 (1976), no. 1, 10–14. (Russian)

    MathSciNet  Google Scholar 

  6. Jacewicz Ch. Al., A nonprincipal invariant subspace of the Hardy space on the torus, Proc. Amer. Math. Soc. 31 (1972), 127–129.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Apostol C., Bercovici H., Foiaş C., Pearcy C., Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I, J. Funct. Anal. 63 (1985), 369–404.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hedenmalm H., Richter S., Seip K., Zero sets and invariant subspaces in the Bergman space, in preparation.

    Google Scholar 

  3. Hedenmalm H., An invariant subspace in the Bergman space having the codimension two property, J. Reine Angew. Math. (to appear).

    Google Scholar 

References

  1. Korenblum B. I., Doklady Akad. Nauk SSSR 200 (1971), no. 1, 24–27 (Russian); English transl. in Soviet Math. Dokl. (1971).

    Google Scholar 

  2. Caughran J. G., Zeros of analytic function with infinitely differentiable boundary values, Proc. Amer. Math. Soc. 24 (1970), 700–704.

    Article  MathSciNet  MATH  Google Scholar 

  3. Nelson D., A characterization of zero sets for C A Mich. Math. J. 18 (1971), 141–147.

    Article  MathSciNet  MATH  Google Scholar 

  4. Taylor B. A., Williams D. L., Zeros of Lipschitz functions analytic in the unit disc, Mich. Math. J. 18 (1971), 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  5. Taylor B. A., Williams D. L., Ideals in rings of analytic functions with smooth boundary values, Can. J. Math. 22 (1970), 1266–1283.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wells, J., On the zeros of functions with derivatives in H1 and H, Can. J. Math. 22 (1970), 342–347.

    Article  MATH  Google Scholar 

References

  1. Hruščëv S. V., Sets of uniqueness for the Gevrey classes, Ark. för mat. 15 (1977), 235–304.

    MathSciNet  Google Scholar 

  2. Korenblum B. I., Closed ideals of the ring A n, Funct. anal. and its applications 6 (1972), no. 3, 38–52. (Russian)

    MathSciNet  Google Scholar 

  3. Taylor B. A., Williams D. L., Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math. 22 (1970), 1266–1283.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Forelli F., A note on ideals in the disc algebra, Proc. Amer. Math. Soc. 84 (1982), 389–392.

    Article  MathSciNet  MATH  Google Scholar 

  2. Tomassini G. A remark on the Banach algebra LH (\(\mathbb{D}^N\)), Boll. Un. Mat. Ital. 2 (1969), 202–204.

    MathSciNet  MATH  Google Scholar 

References

  1. Mortini R., Finitely generated prime ideals in H and A(\(\mathbb{D}\)), Math. Zeit. 191 (1986), 297–302.

    Article  MathSciNet  MATH  Google Scholar 

  2. Gorkin, P., Prime ideals in closed subalgebras of L, Michigan Math J. 33 (1986), 315–323.

    Article  MathSciNet  MATH  Google Scholar 

  3. Mortini R., The Chang-Marshall algebras, Mitteilungen Math. Seminar Giessen 185 (1988), 1–76.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor P. Havin Nikolai K. Nikolski

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Nikolski, N.K. (1994). Spectral analysis and synthesis. In: Havin, V.P., Nikolski, N.K. (eds) Linear and Complex Analysis Problem Book 3. Lecture Notes in Mathematics, vol 1574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0101061

Download citation

  • DOI: https://doi.org/10.1007/BFb0101061

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57871-0

  • Online ISBN: 978-3-540-48368-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics