Skip to main content

Differentiability of the composition and quantile operators for regulated and A. E. continuous functions

  • Chapter
  • First Online:
Differentiability of Six Operators on Nonsmooth Functions and p-Variation

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1703))

  • 509 Accesses

Abstract

If F is a function defined on the range of a function G, let (FoG)(x)=F(G(x)) for all x. Let (Ω, μ) be a finite measure space. The paper treats differentiability of the two-function composition operator f, g(F+f)o(G+g) into L q(Ω, μ). where g→0 in L s and 1≤q<s. The case where f=0, namely g↦Fo(G+g), for suitable F, G, is a special case of the so-called Nemytskii or superposition operator, which has been extensively studied, as in the book by J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, 1990, Chapter 3. The remainder R 0 in differentiating the two-function composition operator splits as R 0=R 1+R 2, where R 1fo(G+g)foG and R 2Fo(G+g)FoG(F′oG)·g. Then R 2 is the remainder for the Nemytskii operator. Thus, this paper concentrates on R 1. For suitable G, the question then is, for what f, and uniformly over what classes of f, is ‖tf○(G+g)-tfg q =o({t{+‖g s ) as {t{+‖g g →0, or equivalently ‖f○(G+g)-fG g =o(1) as ‖g s →0. This is a question of continuity or equicontinuity of Nemytskii operators at points. Previously, for the most part, global continuity had been treated. The individual f are shown to be exactly those which are continuous almost everywhere, suitably measurable, and such that {f(x){/(1+{x{s/q) is bounded in x. Large classes of f, called “uniformly Riemann,” are given over which the differentiability is uniform. These give in particular Fréchet differentiability W Φ×L sL q for an arbitrary Φ-variation space W Φ, e.g. any p-variation space W p. Very similar results are found for the quantile operator g(G+g) for functions G and g from an interval J into ℝ, where H (y)≔inf{xJ:H(x)y}. Also, a theorem is given on composition of Banach-valued functions with supremum norms, where again f need not be differentiable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 52.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. K. Andersen—Ø. Borgan—R. D. Gill—N. Keiding, Statistical Models Based on Counting Processes, Springer-Verlag, Berlin, 1993.

    Book  MATH  Google Scholar 

  2. J. Appell, Upper estimates for superposition operators and some applications, Ann. Acad. Sci. Fenn. (=Suomalaisen Tiedeakatemian Helsingfors Toimitsukia) Ser. A I. Math., 8 (1983), pp. 149–159.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Appell, The superposition operator in function spaces—A survey, Expositiones Math., 6 (1988), pp. 209–270.

    MathSciNet  MATH  Google Scholar 

  4. J. Appell—P. P. Zabrejko, Nonlinear superposition operators, Cambridge University Press, 1990.

    Google Scholar 

  5. V. O. Asatiani—Z. A. Chanturia, The modulus of variation of a function and the Banach indicatrix, Acta Sci. Math., 45 (1983), pp. 51–66.

    MathSciNet  MATH  Google Scholar 

  6. V. I. Averbukh—O. G. Smolyanov, The theory of differentiation in linear topological spaces, Russian Math. Surveys, 22 (1967), no. 6, pp. 201–258=Uspekhi Mat. Nauk, 22 (1967), no. 6, pp. 201–260.

    Article  MATH  Google Scholar 

  7. V. I. Averbukh—O. G. Smolyanov, The various definitions of the derivative in linear topological spaces, Russian Math. Surveys, 23 (1968), no. 4, pp. 67–113=Uspekhi Mat. Nauk, 23 (1968), no. 4, pp. 67–116.

    Article  MATH  Google Scholar 

  8. S. K. Berberian, The character space of the algebra of regulated functions, Pacific J. Math., 74 (1978), pp. 15–36.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  10. P. Billingsley—F. Topsøe, Uniformity in weak convergence, Z. Wahrscheinlichkeitsth. verw. Geb., 7 (1967), pp. 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. H. Bingham, Fluctuation theory in continuous time, Adv. Appl. Prob. 7 (1975), pp. 705–766.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Bourbaki, Fonctions d'une variable réelle, Hermann, Paris, 1976.

    MATH  Google Scholar 

  13. M. Brokate—F. Colonius, Linearizing equations with state-dependent delays, Appl. Math. Optimiz., 21 (1990), pp. 45–52.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Bücher, Differentiabilité de la composition et complétitude de certains espaces fonctionnels, Comm. Math. Helv., 43 (1968), pp. 256–288.

    Article  MATH  Google Scholar 

  15. Z. A. Chanturia [Čanturija], The modulus of variation of a function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), pp. 63–66 =Soviet Math. Dokl. 15 (1974), pp. 67–71.

    MathSciNet  Google Scholar 

  16. D. L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.

    Book  MATH  Google Scholar 

  17. R. B. Darst, A characterization of universally measurable sets, Proc. Camb. Philos. Soc., 65 (1969), pp. 617–618.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Dellacherie—P.-A. Meyer, Probabilities and Potential, Hermann, Paris, 1975; English transl. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  19. J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960; Fondements de l'analyse moderne, 1, Gauthier-Villars, Paris, 1963.

    MATH  Google Scholar 

  20. R. M. Dudley, Real Analysis and Probability (2d printing, corrected), Chapman and Hall, New York and London, 1993.

    MATH  Google Scholar 

  21. R. M. Dudley, Fréchet differentiability, p-variation and uniform Donsker classes, Ann. Probab., 20 (1992), pp. 1968–1982.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. M. Dudley, The order of the remainder in derivatives of composition and inverse operators for p-variation norms, Ann. Statist., 22 (1994), pp. 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. M. Dudley, Empirical processes and p-variation, in Festschrift for Lucien Le Cam, Eds. D. Pollard, E. Torgersen, G. L. Yang, Springer-Verlag, New York, 1997, pp. 219–233.

    Chapter  Google Scholar 

  24. N. Dunford—J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.

    MATH  Google Scholar 

  25. W. Esty—R. Gillette—M. Hamilton—D. Taylor, Asymptotic distribution theory of statistical functionals: the compact derivative approach for robust estimators, Ann. Inst. Statist. Math., 37 (1985), pp. 109–129.

    Article  MathSciNet  MATH  Google Scholar 

  26. L. T. Fernholz, von Mises calculus for statistical functionals, Lect. Notes in Statist. (Springer-Verlag), 19, 1983.

    Google Scholar 

  27. A. Filippova, Mises' theorem on the asymptotic behavior of functionals of empirical distribution functions and its statistical applications, Theory Probab. Appl., 7 (1961), pp. 24–57.

    Article  MATH  Google Scholar 

  28. M. Fréchet, La notion de différentielle dans l'analyse générale, Ann. Sci. Ecole Norm. Sup. (Sér. 3), 42 (1925), pp. 293–323.

    MATH  Google Scholar 

  29. B. V. Gnedenko—A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, 2d ed. Transl. and Ed. by K. L. Chung, Addison-Wesley, Reading, Mass, 1968.

    Google Scholar 

  30. C. Goffman—G. Moran—D. Waterman, The structure of regulated functions, Proc. Amer. Math. Soc., 57 (1976), pp. 61–65.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Goldberg—W. Kampowsky—F. Tröltzsch, On Nemytskij operators in Lp-spaces of abstract functions, Math. Nachr., 155, pp. 127–140.

    Google Scholar 

  32. A. Gray, Differentiation of composites with respect to a parameter, J. Austral. Math. Soc. (Ser. A), 19 (1975), pp. 121–128.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York, 1963.

    MATH  Google Scholar 

  34. E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series, 1, 3d ed. (1927), repr. Dover, New York, 1957.

    MATH  Google Scholar 

  35. M. A. Krasnosel'skiî—P.P. Zabreîko—E.I. Pustyl'nik— P. Sobolevskiî, Integral operators in spaces of summable functions, Nauka, Moscow, 1966; transl. by T. Ando, Noordhoff, Leyden, 1976.

    MATH  Google Scholar 

  36. R. Lucchetti—F. Patrone, On Nemytskii's operator and its application to the lower semicontinuity of integral functionals, Indiana Univ. Math. J., 29, pp. 703–713.

    Google Scholar 

  37. A. Mukherjea—K. Pothoven, Real and Functional Analysis, Plenum, New York and London, 1978.

    Book  MATH  Google Scholar 

  38. J. Musielak—W. Orlicz, On generalized variations (I), Studia Math., 18 (1959), pp. 11–41.

    MathSciNet  MATH  Google Scholar 

  39. E. Nelson, Regular probability measures on function space, Ann. Math., 69 (1959), pp. 630–643.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Perlman, Functions of generalized variation, Fund. Math., 105 (1980), pp. 199–211.

    MathSciNet  MATH  Google Scholar 

  41. J. A. Reeds III, On the definition of von Mises functionals, Ph. D. Dissertation, Harvard University, 1976.

    Google Scholar 

  42. B. Riemann, Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe, Abh. Gesell. Wiss. Göttingen Math. Kl. 13, pp. 87–132; repr. in Bernhard Riemann: Gesammelte mathematische Werke und wissenschaftlicher Nachlass, with commentaries, 2d. ed., ed. Raghavan Narasimhan, Springer-Verlag (Heidelberg) and Teubner (Leipzig), 1990.

    Google Scholar 

  43. F. Riesz—B. Sz.-Nagy, Leçons d'analyse fonctionelle, 3d ed., Gauthier-Villars, Paris, 1955; Functional Analysis (transl. by L. F. Boron), Ungar, New York, 1955.

    MATH  Google Scholar 

  44. J. Sebastião E Silva, Le calcul différentiel et intégral dans les espaces localement convexes, réels ou complexes I, II, Rend. Accad. Lincei Sci. Fis. Mat. Nat., (Ser. 8) 20 (1956), pp. 743–750, 21 (1956), pp. 40–46.

    MATH  Google Scholar 

  45. G. E. Shilov—B. L. Gurevich, Integral, Measure and Derivative: A Unified Approach, Transl. and Ed. by R. A. Silverman, Prentice-Hall, Englewood Cliffs, N.J., 1966.

    Google Scholar 

  46. I. V. Shragin, Superposition measurability, Sov. Math. (Iz. Vuz.), 19 (1975), pp. 69–76 =Izv. Vyssh. Uch. Zaved., 1975, no. 1, pp. 82–92.

    Google Scholar 

  47. I. V. Shragin, Classes of measurable vector functions and Nemytskii's operators I, II, Russian Math. (Iz. Vuz.), 38 (1994), no. 4, pp. 45–55, no. 5, pp. 70–79, =Izv. Vyssh. Uch. Zaved., 1994, no. 4, pp. 48–58, no. 5, pp. 70–79.

    MathSciNet  Google Scholar 

  48. W. Sierpiński, Sur une propriété des fonctions qui n'ont que des discontinuités de première espèce, Bull. Sect. Scient. Acad Roumaine, 16 (1933), no. 1/3, pp. 1–4. We found these references from secondary sources but have not seen them in the original.

    MATH  Google Scholar 

  49. A. V. Skorohod, Limit theorems for stochastic processes with independent increments, Theory Prob. Appl. 2 (1957), pp. 138–171.

    Article  MathSciNet  Google Scholar 

  50. R. Taberski, On the power variations and pseudovariations of positive integer orders, Demonstratio Math., 19 (1986), pp. 881–893.

    MathSciNet  MATH  Google Scholar 

  51. A. E. Taylor, The differential: nineteenth and twentieth century developments, Arch. Hist. Exact Sci., 12 (1974), pp. 355–383.

    Article  MathSciNet  MATH  Google Scholar 

  52. O. D. Tsereteli (Cereteli), The metric properties of a function of bounded variation, (in Russian), Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze, 26 (1959), pp. 23–64. We found these references from secondary sources but have not seen them in the original.

    MathSciNet  Google Scholar 

  53. O. D. Tsereteli (Cereteli), On the Banach indicatrix and some of its applications, (in Russian), Soobshch. Akad. Gruzin. SSR 25 (1960), pp. 129–136. We found these references from secondary sources but have not seen them in the original.

    MathSciNet  Google Scholar 

  54. M. M. Vaînberg, Variational methods in the study of nonlinear operators, Gostekhizdat, Moscow, 1956; English transl. Holden-Day, San Francisco, 1964.

    MATH  Google Scholar 

  55. R. von Mises, Les lois de probabilité pour les fonctions statistiques, Ann. Inst. H. Poincaré, 6 (1936), pp. 185–212.

    MathSciNet  MATH  Google Scholar 

  56. R. von Mises, On the asymptotic behavior of differentiable statistical functions, Ann. Math. Statist., 18 (1947), pp. 309–348.

    Article  MATH  Google Scholar 

  57. Wang Sheng-Wang, Differentiability of the Nemyckii operator, Doklady Akad. Nauk SSSR, 150 (1963), pp. 1198–1201 (Russian); Sov. Math. Doklady, 4 (1963), pp. 834–837.

    MathSciNet  Google Scholar 

  58. L. C. Young, General inequalities of Stieltjes integrals and the convergence of Fourier series, Math. Ann., 115(1938), pp. 581–612.

    Article  MathSciNet  MATH  Google Scholar 

  59. W. H. Young, On the distinction of right and left at points of discontinuity, Quarterly J. Pure and Applied Math., 39 (1908), pp. 67–83.

    MATH  Google Scholar 

  60. W. H. Young, On the discontinuities of a function of one or more real variables, Proc. London Math. Soc. (Ser. 2) 8 (1909), pp. 117–124.

    Google Scholar 

  61. E. Zeidler, Nonlinear Functional Analysis and its Applications Vols I, II/B, Springer-Verlag, Berlin, 1985, 1990.

    Book  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Dudley, R.M., Norvaiša, R. (1999). Differentiability of the composition and quantile operators for regulated and A. E. continuous functions. In: Differentiability of Six Operators on Nonsmooth Functions and p-Variation. Lecture Notes in Mathematics, vol 1703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0100747

Download citation

  • DOI: https://doi.org/10.1007/BFb0100747

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65975-4

  • Online ISBN: 978-3-540-48814-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics