Skip to main content

Perturbation theory scattering theory

  • Chapter
  • First Online:
Linear and Complex Analysis Problem Book 3

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1573))

  • 1130 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Branges L., Square Summable Power Series, Addison-Wesley (to appear).

    Google Scholar 

  2. De Branges L., The model theory for contractive transformations. Proceedings of the Symposium on the Mathematical Theory of Networks and Systems in Beersheva, Springer-Verlag (to appear).

    Google Scholar 

  3. De Branges L., Shulman L., Perturbations of unitary transformations, J. Math. Anal. Appl. 23 (1968), 294–326.

    Article  MathSciNet  MATH  Google Scholar 

  4. De Branges L., Perturbation theory, J. Math. Anal. Appl. 57 (1977), 393–415.

    Article  MathSciNet  MATH  Google Scholar 

  5. Gohberg I. C., Krein M. G., The Theory of Volterra Operators in Hilbert Space and its Applications, Nauka, Moscow, 1967 (Russian); English transl. Translations of Mathematical Monographs, vol. 24, Amer. Math. Soc., 1970.

    MATH  Google Scholar 

  6. De Branges L., The expansion theorem for Hilbert spaces of analytic functions, Topics in Operator Theory (Rehovot, 1983), Birkhäuser, Basel-Boston, Mass., 1984, pp. 75–107.

    MATH  Google Scholar 

References

  1. Gohberg I. T., Krein M. G., Introduction to the theory of non-selfadjoint operators, Moscow, 1965. (Russian)

    Google Scholar 

  2. Halmos P. R., Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933.

    Article  MathSciNet  MATH  Google Scholar 

  3. Voiculescu D., Some extensions of quasitriangularity, Rev. Roumaine Math. Pures Appl. 18 (1973). 1303–1320.

    MathSciNet  MATH  Google Scholar 

  4. Voiculescu D., On the existence of quasicentral approximate units relative to normal ideals, Part I, J. Functional Analysis 90 (1990), no. 1, 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  5. Voiculescu D., A note on quasidiagonal operators, Operator Theory: Advances and Applications 32 (1988), Birkhäuser Verlag, 265–274.

    Article  MathSciNet  MATH  Google Scholar 

  6. Voiculescu D., Entropy of dynamical systems and perturbations of Hilbert space operators, preprint I.H.E.S., 1990.

    Google Scholar 

References

  1. Magnus W., Winkler, Hill's Equation, Interscience-Wiley, New York, 1966.

    MATH  Google Scholar 

  2. Hochstadt H., Function theoretic properties of the discriminant of Hill's equation, Math. Zeit 82 (1963), 237–242.

    Article  MathSciNet  MATH  Google Scholar 

  3. Trubowitz E., The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30 (1977), 321–337.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubrovin B. A., Novikov S. P., A periodic problem for the Korteweg-de Vries and Sturm-Liouville equation. Their connection with algebraic geometry, Doklady Akad. Nauk SSSR 219 (1974), no. 3, 531–534. (Russian).

    MathSciNet  MATH  Google Scholar 

  5. McKean H. P., van Moerbeke P., The spectrum of Hill's equation, Invent. Math. 30 (1975), 217–274.

    Article  MathSciNet  MATH  Google Scholar 

  6. McKean H. P., Trubowitz E., Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), 143–226.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lax P., Periodic solutions of the K dV equation, Comm. Pure Appl. Math. 28 (1975), 141–188.

    Article  MathSciNet  MATH  Google Scholar 

  8. Koosis P., Weighted polynomial approximation on arithmetic progressions of integrals or points, Acta Math. 116 (1966), 223–277.

    Article  MathSciNet  MATH  Google Scholar 

  9. Faddeev L. D., Properties of the S-matrix of the one-dimensional Schrödinger equation, Trudy Mat. Inst. Steklov AN SSSR 73 (1964), 314–336. (Russian)

    MathSciNet  MATH  Google Scholar 

  10. Deift P., Trubowitz E., Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), no. 2, 121–251.

    Article  MathSciNet  MATH  Google Scholar 

  11. McKean H. P., Theta functions solutions and singular curves, (Proc. Conf., Park City, Utah., 1977, 237–254), Dekker, New York, 1979, Lecture Notes in Pure and Appl. Math., 48.

    MATH  Google Scholar 

References

  1. Birman M. Sh., Solomyak M. Z., Notes on the function of spectral shift, Zap. Nauchn. Semin. LOMI 27 (1972), 33–46. (Russian)

    MATH  Google Scholar 

  2. Birman M. Sh., Solomyak M. Z., Double Stieltjes operator integrals, III, Problems of Math. Physics (1973), no. 6, 27–53. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Krein M. G., Some new studies in the theory of perturbations of the self-adjoint operators, First Math. Summer School, 1, Kiev, 1964, pp. 103–187. (Russian)

    Google Scholar 

  4. Daletskii Yu. L., Krein S. G., Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations, Trudy Sem. Funkts. Anal., I, Voronezh, 1956, pp. 81–105. (Russian)

    Google Scholar 

  5. Peller V. V., Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Matem. Sbornik 113 (1980), no. 4, 539–581. (Russian)

    MathSciNet  Google Scholar 

  6. Peller V. V., Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class , Integr. Equat. and Oper. Theory 5 (1982), no. 2, 244–272.

    Article  MathSciNet  MATH  Google Scholar 

  7. Farforovskaya Yu. B., An estimate of the norm |f(B)−f(A)| for selfadjoint operators A and B, Zapiski nauchn. sem. LOMI 56 (1976), 143–162 (Russian); English transl. in J. Soviet Math. 14 (1980), no. 2, 1133–1149.

    MathSciNet  Google Scholar 

References

  1. Peller V. V., Hankel operators in the perturbation theory of unitary and selfadjoint operators, Funktsional. Anal. i ego Prilozhen. 19 (1985), no. 2, 37–51. (Russian).

    MathSciNet  Google Scholar 

  2. Peller V. V., Functional calculus for a pair of almost commuting selfadjoint operators, Report no. 14, Institut Mittag-Leffler, 1990/1991.

    Google Scholar 

  3. Peller V. V., Hankel operators in the perturbation theory of unbounded selfadjoint operators, Analysis and Partial Differential Equations. A collection of papers dedicated to Misha Cotlar, Marcel Dekker, Inc., 1990, pp. 529–544.

    Google Scholar 

  4. Peller V. V., For which f does A − B ∈ ?, Operator Theory: Advances and Applications 24 (1987), Birkhäuser Verlag, 289–294.

    MathSciNet  MATH  Google Scholar 

  5. Arazy J., Barton T. J., Friedman Y., Operator differentiable functions, Integral Equations Operator Theory 13 (1990), 461–487.

    Article  MathSciNet  MATH  Google Scholar 

  6. Krein M. G., On some investigations in the perturbation theory of selfadjoint operators, The First Summer School, Kiev, 1964, pp. 103–187. (Russian)

    Google Scholar 

  7. Farforovskaya Yu. B., An example of a Lipschitz function of a selfadjoint operator giving a nonnuclear increment under a nuclear perturbation, Zapiski Nauchn. Semin. LOMI 30 (1972), 146–153. (Russian)

    Google Scholar 

  8. Birman M. S., Solomyak M. Z., Operator integration, perturbations, and commutators, Zapiski Nauchn. Semin. LOMI 170 (1989), 34–66. (Russian)

    MathSciNet  MATH  Google Scholar 

  9. Pincus J., Commutators and systems of singular integral equations, I, Acta Math. 121 (1968). 219–249.

    Article  MathSciNet  MATH  Google Scholar 

  10. Helton J. W., Howe R., Integral operators, commutators, traces, index, and homology, Lecture Notes in Math. 345 (1973), 141–209.

    Article  MathSciNet  MATH  Google Scholar 

  11. Carey R. W., Pincus J. D., Indiana Univ. Math. J. 23 (1974), 1031–1042.

    Article  MathSciNet  Google Scholar 

  12. Johnson B. E., Williams J. P., The range of a normal derivation, Pacific J. Math. 58, 105–122.

    Google Scholar 

References

  1. Birman M. Sh., Solomyak M. Z., Double Stieltjes operator integrals III, Problems of Math. Physics (1973), no. 6, 27–53. (Russian)

    MathSciNet  MATH  Google Scholar 

  2. Birman M. Sh., Solomyak M. Z., Notes on the function of spectral shift, Zap. Nauchn. Semin. LOMI 27 (1972), 33–46. (Russian)

    MATH  Google Scholar 

  3. Krein M. G., On the trace formula in the theory of perturbations, Matem. Sbornik 33 (1953), no. 3, 597–626. (Russian)

    MathSciNet  Google Scholar 

  4. Krein M. G., Some new studies in the theory of perturbations of the self-adjoint operators, First Math. Summer School, I, Kiev 1964, pp. 103–187. (Russian)

    Google Scholar 

  5. Peller V. V., Hankel operators in the perturbation theory of unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen. 19 (1985), no. 2, 37–51. (Russian)

    Article  MathSciNet  Google Scholar 

  6. Birman M. S., Solomyak M. Z., Operator integration, perturbations, and commutators, Zapiski Nauchn. Semin. LOMI 170 (1989), 34–66. (Russian)

    MathSciNet  MATH  Google Scholar 

References

  1. Gohberg I. C., Krupnik N. Ya., One-dimensional linear singular integral equations, “Stiinca”, Kishinëv, 1973 (Russian); German transl. Einführung in die Theorie der eindimensionalen singulären Integral-operatoren, Birkhäuser Verlag, 1979.

    Google Scholar 

  2. Il'in E. M., Scattering characteristics of a problem of diffraction by a wedge and by a screen, Zapiski nauchn. sem. LOMI 107 (1982), 193–197 (Russian); English transl. in J. Soviet Math. 36 (1987), no. 3, 417–419.

    MathSciNet  MATH  Google Scholar 

References

  1. Ben-Artzi M., Devinatz A., The limiting absorption principle for partial differential operators, Memoirs Amer. Math. Soc. 66 (1987), no. 364.

    Google Scholar 

  2. Ben-Artzi M., Devinatz A., Local smoothing and convergence properties of Schrödinger type equations, J. Functional Analysis (to appear).

    Google Scholar 

  3. Bourgain, J., A remark on Schrödinger operators, Israel J. Math. (to appear).

    Google Scholar 

  4. Constantin P., Saut J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413–439.

    Article  MathSciNet  MATH  Google Scholar 

  5. Carleson L., Some analytical problems related to statistical mechanics, Lecture Notes in Math. 779 (1979), 5–45

    Article  MathSciNet  Google Scholar 

  6. Dahlberg B. E. J., Kenig C. E., A note on almost everywhere behavior of solutions to the Schrödinger equation, Lecture Notes in Math. 908 (1981), 205–209.

    Article  MathSciNet  Google Scholar 

  7. Kenig C. E., Ponce G., Vega L., Oscillatory integrals and regularity of dispersive equations, Indiana U. Math. J. 40 (1991), no. 1, 33–69.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sjölin P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699–715.

    Article  MathSciNet  MATH  Google Scholar 

  9. Vega L., Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874–878.

    MathSciNet  MATH  Google Scholar 

References

  1. Ben-Artzi M., Dermenjian Y. and Guillot, J.-C., Acoustic waves in stratified fluids: A spectral theory, Comm. in Partial Differential Equations 14 (1989), no. 4, 479–517.

    MathSciNet  MATH  Google Scholar 

  2. Ben-Artzi M., Global estimates for the Schrödinger equation, J. Functional Analysis (to appear).

    Google Scholar 

  3. Ben-Artzi M., Devinatz A., The limiting absorption principle for partial differential operators, Memoirs Amer. Math. Soc. 66 (1987), no. 364.

    Google Scholar 

  4. Ben-Artzi M., Devinatz A., Local smoothing and convergence properties of Schrödinger type equations, J. Functional Analysis (to appear).

    Google Scholar 

  5. Constantin P., Saut, J.-C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413–439.

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin P., Saut J.-C., Local smoothing properties of Schrödinger equations, Indiana U. Math. J. 38 (1989), 791–810.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kenig C. E., Ponce G., Vega L., Oscillatory integrals and regularity of dispersive equations, Indiana U. Math. J. 40 (1991), no. 1, 33–69.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sjölin P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699–715.

    Article  MathSciNet  MATH  Google Scholar 

  9. Vega L., Schrödinger equations: Pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874–878.

    MathSciNet  MATH  Google Scholar 

References

  1. Agmon S., Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa II 2 (1975), 151–218.

    MathSciNet  MATH  Google Scholar 

References

  1. Dollard J., Asymptotic convergence and Coulomb interaction, J. Math. Phys. 5 (1964), 729–738.

    Article  MathSciNet  Google Scholar 

  2. Sakhnovich L. A., Generalized wave operators, Matem. Sb. 81 (1970), no. 2, 209–227. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Sakhnovich L. A., Generalized wave operators and regularization of the perturbation expansion, Tcoret. Mat. Fiz. 2 (1970), no. 1, 80–86. (Russian)

    MathSciNet  Google Scholar 

  4. Buslaev V. S., Matveev V. B., Wave operators for the Schrödinger equation with slowly decreasing potential, Teoret. Mat. Fiz. 2 (1970), 367–376. (Russian)

    MathSciNet  Google Scholar 

  5. Sakhnovich L. A., The invariance principle for generalized wave operators, Funkts. Anal. i Prilozh. 5 (1971), no. 1, 61–68. (Russian)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tunel effects in the solids, “Mir”, Moscow, 1973. (Russian)

    Google Scholar 

  7. Brodskii A. M., Gurevich A. Yu., Theory of electron emission from metals, 1973. (Russian)

    Google Scholar 

  8. Faddeev, L. D., Mathematical Questions in the quantum theory of scattering for a system of three particles, Trudy Matem. Inst. Steklov AN SSSR 69 (1963). (Russian)

    Google Scholar 

  9. Sakhnovich L. A., On taking into account all scattering channels in the N-body problem with Coulomb interaction, Teoret. Mat. Fiz. 13 (1972), no. 3, 421–427. (Russian)

    MathSciNet  Google Scholar 

  10. Sakhnovich L. A., On the Ritz formula and the quantum defects of the spectrum for a radial Schrödinger equation problem with Coulomb interaction, Izv. Akad. Nauk SSSR, ser. matem. 30 (1966), no. 6, 1297–1310. (Russian)

    MATH  Google Scholar 

  11. Kostenko N. M., A transformation operator, Izv. Vyssh. Uchebn. Zav. Matematika 9 (1977), 43–47. (Russian).

    MathSciNet  Google Scholar 

  12. Sakhnovich L. A., On properties of the discrete and continuous spectra of the radial Dirac equation, Doklady Akad. Nauk SSSR 185 (1969), no. 1, 61–64. (Russian)

    MathSciNet  Google Scholar 

  13. Sakhnovich L. A., A semi-inverse problem, Uspekhi Matem. Nauk 18 (1963), no. 3, 199–206. (Russian)

    MathSciNet  MATH  Google Scholar 

References

  1. Ahiezer N. I., Glasman I. M., Theory of Linear Operators in Hilbert Space, “Nauka”, Moscow, 1966 (Russian); English transl. Ungar, New York, vol. 1, 1961, vol. 2, 1963.

    Google Scholar 

  2. Faddeev L. D., On the Friedrichs model in the perturbation theory of the continuous spectrum, Trudy Matem. Inst. Steklov AN SSSR 73 (1964), 292–313. (Russian)

    MathSciNet  Google Scholar 

  3. Birman M. Sh., Yafaev D. R., A general scheme in the stationary scattering theory, Problems of Math. Phys., LGU 12 (1987), 98–117. (Russian)

    MathSciNet  Google Scholar 

  4. Yafaev, D. R., Mathematical Scattering Theory. V.1. General theory, Amer. Math. Soc., 1992.

    Google Scholar 

  5. Kuroda S. T., Scattering theory for differential operators, J. Math. Soc. Japan 25 (1973), 75–104, 222–234.

    Article  MathSciNet  MATH  Google Scholar 

  6. Birman M. Sh., Entina S. B., Stationary approach in the abstract scattering theory, Izv. AN USSR 31 (1967), 401–430. (Russian)

    MathSciNet  MATH  Google Scholar 

  7. Naboko S. N., On the boundary problems of analytic operator-functions with positive imaginary part, Zapiski nauchn. semin. LOMI 157 (1987), 55–69. (Russian)

    MATH  Google Scholar 

  8. Birman M. Sh., Yafaev D. R., On the trace method in the theory of potential scattering, Zapiski nauch. semin. LOMI 171 (1989), 12–35. (Russian)

    MATH  Google Scholar 

  9. Gol'dshtein I. Ya., Molchanov S. A., Pastur L. A., A typical one-dimensional Schrödinger operator has a pure point spectrum, Funkts. Anal. Prilozh. 11 (1977), no. 1, 1–10 (Russian); English transl. in Funct. Anal. Appl. 11 (1977), no. 1, 1–8.

    Article  Google Scholar 

References

  1. Faddev L. D., On the Friedrichs model in perturbation theory, Trudy Matem. Inst. Steklov AN SSSR 30 (1964), 33–75. (Russian)

    Google Scholar 

  2. Pavlov B. S. and Petras S. V., On singular spectrum of a weakly perturbed multiplication operator, Funkts. Anal. i Prilozh. 4 (1970), no. 2, 54–61. (Russian)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pavlov B. S., A uniqueness theorem for functions with a positive imaginary part, Problems of Math. Physics, No. 4: Spectral Theory. Wave Processes, Leningr. State Univ., Leningrad, 1970, pp. 118–124. (Russian)

    Google Scholar 

References

  1. Naboko S. N., Uniqueness theorems for operator-valued functions with a positive imaginary part and the singular spectrum in the selfadjoint Friedrichs model, Dokl. Akad. Nauk SSSR 275 (1984), no. 6, 1310–1313. (Russian)

    MathSciNet  MATH  Google Scholar 

  2. Naboko S. N., Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model, Arkiv för Matem. 25 (1987), no. 1, 115–140.

    Article  MathSciNet  MATH  Google Scholar 

  3. Mikityuk, Ya. V., Uniqueness theorems for analytic operator functions with a non-negative imaginary part, Funktsion. Anal. i Prilozhen. 22 (1988), no. 1, 73–74. (Russian)

    Article  MathSciNet  Google Scholar 

  4. Mikityuk Ya. V., On the singular spectrum of selfadjoint operators, Dokl. Akad. Nauk SSSR 303 (1988), no. 1, 33–36. (Russian)

    Google Scholar 

  5. Yakovlev S. I., On perturbations of the singular spectrum in the selfadjoint Friedrichs model, Vestnik LGU, ser.I (1990), no. 1, 117–119. (Russian)

    MathSciNet  Google Scholar 

  6. Naboko S. N., On the structure of zeros of operator functions with a positive imaginary part of the classes , Dokl. Akad. Nauk SSSR 295 (1987), no. 3, 538–541. (Russian)

    Google Scholar 

  7. Naboko S. N., Uniqueness theorems for operator R-functions of classes R 0(), p>1, Problemy Matem. Fiziki 13 (1991), 169–191. (Russian)

    MathSciNet  Google Scholar 

  8. Naboko S. N., On the structure of singularities of operator functions with a positive imaginary part, Funktsion. Anal. i Prilozhen. 25 (1991), no. 4, 1–13. (Russian)

    MathSciNet  MATH  Google Scholar 

References

  1. Makarov N. G., Unitary point spectrum of almost unitary operators, Zapiski nauchn. sem. LOMI 126 (1983), 143–149 (Russian); English transl. in J. Soviet Math. 27 (1984), no. 1, 2517–2520.

    MathSciNet  MATH  Google Scholar 

  2. Clark D., One dimensional perturbations of restricted shifts, J. analyse Math. 25 (1972), 169–191.

    Article  MathSciNet  MATH  Google Scholar 

Reference

  1. Makarov N. G., One-dimensional perturbations of singular unitary operators, Acta Sci. Math. 52 (1988), 459–463.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor P. Havin Nikolai K. Nikolski

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Birman, M.S. (1994). Perturbation theory scattering theory. In: Havin, V.P., Nikolski, N.K. (eds) Linear and Complex Analysis Problem Book 3. Lecture Notes in Mathematics, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0100207

Download citation

  • DOI: https://doi.org/10.1007/BFb0100207

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57870-3

  • Online ISBN: 978-3-540-48367-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics