Skip to main content

Banach spaces

  • Chapter
  • First Online:
Linear and Complex Analysis Problem Book 3

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1573))

  • 1183 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Figiel T., Johnson W. B., Large subspaces of n and estimates of the Gordon-Lewis constants, Israel J. Math. 37 (1980), 92–112.

    Article  MathSciNet  MATH  Google Scholar 

  2. Figiel T., Lindenstrauss J., Milman V. D., The dimension of almost spherical sections of convex bodies, Acta Math. 129 (1977), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

  3. Maurey B., Pisier G., Séries de variables aleatoires vectorielles indépendantes et propriétés géometriques des espaces de Banach, Studia Math. 58 (1976), 45–90.

    MathSciNet  MATH  Google Scholar 

  4. Milman V. D., Almost Euclidean quotients spaces of subspaces of finite dimensional normed spaces, Proc. Amer. Math. Soc. 94 (1985), 445–449.

    Article  MathSciNet  MATH  Google Scholar 

  5. Milman V. D., Geometrical inequalities and mixed volumes in Local Theory of Banach Spaces, Asterisque 131 (1985), 373–400.

    MathSciNet  MATH  Google Scholar 

  6. Milman V. D., Inegalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés, C.R. Acad. Sci. Paris 302 (1986), 25–28.

    MathSciNet  MATH  Google Scholar 

  7. Milman V. D., Some applications of duality relations, Springer LNM 1469 (1991), 13–40.

    MathSciNet  MATH  Google Scholar 

  8. Milman, V. D., Schechtman G., Asymptotic theory of finite-dimensional normed spaces, Springer LNM 1200 (1986).

    Google Scholar 

  9. Pisier G., Remarques sur un résultat non publié de B. Maurey, Sem. d'Anal. Fonctionnelle (1981), Ecole Polytechnique, Paris.

    MATH  Google Scholar 

  10. Pisier G., Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. 115 (1982), 375–392.

    Article  MathSciNet  MATH  Google Scholar 

  11. Pisier G., The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, 1989.

    Google Scholar 

  12. Szarek S., Tomczak-Jaegermann N., On nearly Euclidean decompositions for some classes of Banach spaces, Compositio Math. 40 (1980), 367–385.

    MathSciNet  MATH  Google Scholar 

References

  1. Bourgain J., New Banach space properties of the disc algebra and H , Acta Math. 152 (1984), no. 1-2, 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain J., Quelques propriétés linéaires topologiques de l'espace des séries de Fourier uniformément convergentes, C.R.A.S. Paris 295 (1982), Sér. 1, 623–625.

    MATH  Google Scholar 

  3. Oberlin D. M., A Rudin-Carleson theorem for uniformly convergent Taylor series, Michigan Math. J. 27 (1980), no. 3, 309–314.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Pelczyński A., Banach Spaces of Analytic Functions and Absolutely Summing Operators, CBMS regional conference series, vol. 30.

    Google Scholar 

  2. Bočkarev S. V., Existence of a basis in the space of functions analytic in the disk, and some properties of Franklin's system, Mat. Sbornik 95 (137) (1974), no. 1, 3–18 (Russian); English transl. in Math. USSR Sbornik 24 (1974), no. 1.

    Google Scholar 

  3. Sjölin P., Stromberg J.-O., Basis properties of Hardy spaces, Stockholms Universitet preprint (1981), no. 19.

    Google Scholar 

  4. Wojtaszczyk P., The Franklin system is an unconditional basis in H 1, Arkiv för Mat. 20 (1982), no. 2, 293–300.

    Article  MathSciNet  MATH  Google Scholar 

  5. Wojtaszczyk P., H p-spaces, p<1 and spline systems, Studia Math. 77 (1984), 289–320.

    MathSciNet  MATH  Google Scholar 

  6. Wojtaszczyk P., Hardy spaces on the complex ball are isomorphic to Hardy spaces on the disc, 1≤p<∞, Annals of Math. 118 (1983), 21–34.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Bourgain J., Homogeneous polynomials on the ball algebra and polynomial bases, Israel J. Math. 68 (1989), no. 3, 327–347.

    Article  MathSciNet  MATH  Google Scholar 

  2. Wolniewicz T. M., On isomorphisms between Hardy spaces on complex balls, Ark. för Mat. 27 (1989), 155–168.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. [B] Bourgain J., The non-isomorphisms of H 1-spaces in a different number of variables, Bull. Soc. Math. Belg. Sér. B. 35 (1983), 127–136.

    MATH  Google Scholar 

  2. [CFMS] Caffarelli L., Fabes E., Mortola, S., Salsea S., Boundary behaviour of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621–640.

    Article  MathSciNet  MATH  Google Scholar 

  3. [C-W] Coiffman R. R., Weiss G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.

    Article  MathSciNet  Google Scholar 

  4. [M] Maurey B., Isomorphismes entre espaces H 1, Acta Math. 145 (1980), 79–120.

    Article  MathSciNet  MATH  Google Scholar 

  5. [Mü] Müller P., On linear topological properties of H 1 on spaces of homogeneous type, Trans. AMS 317 (1990), 463–484.

    Google Scholar 

  6. [St] Stein E. M., Boundary behaviour of holomorphic functions of several complex variables, Princeton University Press, Princeton NJ (1972).

    MATH  Google Scholar 

  7. [V] Varopoulos N. Th., BMO functions and the -equation, Pacific J. Math. 71 (1977), 221–273.

    Article  MathSciNet  MATH  Google Scholar 

  8. [Wol1] Wolniewicz T., Independent inner functions in the classical domains, Glasgow Math. J. 29 (1987), 229–236.

    Article  MathSciNet  MATH  Google Scholar 

  9. [Wol2] Wolniewicz T., On isomorphisms between Hardy spaces on complex balls, Ark. Math. 27 (1989), 155–168.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. [A] Arai Hitoshi, On isomorphisms between Hardy spaces on strongly pseudoconvex domains (to appear).

    Google Scholar 

References

  1. Krein S. G., Petunin Yu. I., Semenov E. M., Interpolation of linear operators, Nauka, Moscow, 1978 (Russian); English transl. 1982, AMS Providence.

    Google Scholar 

  2. Bryskin I. B., Sedaev A. A., The geometric properties of the unit ball in spaces of the type of the Hardy classes, Zapiski nauchn. sem. LOMI 39 (1974), 7–16 (Russian); English transl. in J. Soviet Math. 8 (1977), no. 1, 1–9.

    MathSciNet  MATH  Google Scholar 

  3. Hoffman K., Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

    MATH  Google Scholar 

  4. Zaidenberg M. G., On isometric classification of symmetric spaces, Doklady Akad. Nauk SSSR 234 (1977), no. 2, 283–286 (Russian); English transl. in Soviet Math. Dokl. 18 (1977), no. 3, 636–640.

    MathSciNet  MATH  Google Scholar 

References

  1. Plotkin A. I., Continuation of L p-isometries, Zapiski nauchn. sem. LOMI 22 (1971), 103–129 (Russian); English transl. in J. Soviet Math. 2 (1974), no. 2.

    MathSciNet  MATH  Google Scholar 

  2. Plotkin A. I., Isometric operators in L p-spaces of analytic and harmonic functions, Zapiski nauchn. sem. LOMI 30 (1972), 130–145 (Russian); English transl. in J. Soviet Math. 4 (1975).

    MathSciNet  Google Scholar 

  3. Plotkin A. I., An algebra that is generated by translation operators, and L p-norms, Functional Analysis, no.6, Theory of operators in linear spaces, Uljanovsk, 1976, pp. 112–121. (Russian)

    Google Scholar 

  4. Plotkin A. I., Isometric operators in spaces of summable analytic and harmonic functions, Doklady Akad. Nauk SSSR 185 (1969), no. 5, 995–997 (Russian); English transl. in Soviet Math. Dokl. 10 (1969).

    MathSciNet  MATH  Google Scholar 

References

  1. Enflo P., A counter-example to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309–317.

    Article  MathSciNet  MATH  Google Scholar 

  2. Jones P. W., BMO and the Banach space approximation problem, Institut Mittag-Leffler report (1983), no. 2.

    Google Scholar 

References

  1. Aikawa H., Hayashi N., Saitoh S., The Bergman space on a sector and the heat equation, Complex Variables 15 (1990), 27–36.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aikawa H., Hayashi N., Saitoh S., Isometrical identities for the Bergman and the Szegö spaces on a sector, J. Math. Soc. Japan 43 (1991), 195–201.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hayashi N., Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and the Szegö spaces on a sector, Duke Math. J. 62 (1991), 575–591.

    Article  MathSciNet  MATH  Google Scholar 

  4. Saitoh S., Representations of the norms in Bergman-Selberg spaces on strips and half planes, Complex Variables (to appear).

    Google Scholar 

References

  1. Ovsepian R. I., Pelczyński A., On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L 2, Studia Math. 54 (1975), 149–159.

    MathSciNet  MATH  Google Scholar 

  2. Weis L., On strictly singular and strictly cosingular operators, Studia Math. 54 (1975), 285–290.

    MathSciNet  Google Scholar 

  3. Pelczyński A., Banach spaces of analytic functions and absolutely summing operators, Regional conference series in mathematics, vol. 30, AMS, Providence, 1977.

    MATH  Google Scholar 

  4. Bourgain J., Delbaen F., A class of special L -spaces, Acta Math. 145 (1980), no. 3-4, 155–176.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Wojciechowski M., Translation invariant projections on anisotropic Sobolev spaces on tori in L 1-and uniform norms, Studia Math. 100 (1991), no. 2, 149–161.

    MathSciNet  MATH  Google Scholar 

  2. Pelczyński A., Wojciechowski M., Paley projections on anisotropic Sobolev spaces on tori, Proc. London Math. Soc. 65 (1992), no. 2, 405–422.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Lindenstrauss J., Pelczyński A., Absolutely summing operators in L p -spaces and their applications, Studia Math. 29 (1968), 275–326.

    MathSciNet  MATH  Google Scholar 

  2. Kwapień S., On a theorem of L. Schwartz and its applications to absolutely summing operators, Studia Math. 38 (1970), 193–201.

    MathSciNet  MATH  Google Scholar 

  3. Dubinsky E., Pelczyński A., Rosenthal H., On Banach spaces X for which2(L ,X)=B(L ,X), Studia Math. 44 (1972), 617–648.

    MathSciNet  MATH  Google Scholar 

  4. Maurey B., Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L p, Astérisque 11 (1974), 1–163.

    MathSciNet  MATH  Google Scholar 

  5. Morrell J. S., Retherford J. R., p-trivial Banach spaces, Studia Math. 43 (1972), 1–25.

    MathSciNet  MATH  Google Scholar 

  6. Davis W. J., Johnson W. B., Compact nonnuclear operators, Studia Math. 51 (1974), 81–85.

    MathSciNet  Google Scholar 

  7. Johnson W. B., A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), 201–205.

    MathSciNet  MATH  Google Scholar 

  8. Komarchev I. A., On 2-absolutely summing operators in Banach lattices, Vestnik LGU, ser. mat., mekh., astr. (1980), no. 19, 97–98. (Russian)

    MATH  Google Scholar 

  9. Figiel T., Lindenstrauss J., Milman, V., The dimension of almost spherical sections of convex bodies, Acta Math. 133 (1977), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Rudel'son M. V., A characterization of 2-trivial Banach spaces with unconditional basis, Zapiski Nauchn. Semin. LOMI 157 (1987), 76–87. (Russian)

    MathSciNet  MATH  Google Scholar 

References

  1. Makarov, B. M., Stably regular operators and the uniqueness of operator ideals with local unconditional structure, Sibirskij Matem. Zh. 28 (1987), no. 1, 157–162 (Russian); English transl. in Siberian Math. J. 28 (1987), no. 1, 120–124.

    Google Scholar 

  2. Makarov B. M., p-absolutely summing operators and some applications, Algebra i Analiz 3 (1991), no. 2, 1–76 (Russian); English transl. in St. Petersburg Math. J. 3 (1992), no. 2, 227–298.

    MathSciNet  MATH  Google Scholar 

  3. Makarov B. M., Ulymzhiev M. D., Lattices of stably regular operators, Vestnik Leningr. Univ., Ser. 1 (1991), no. 3, 44–50 (Russian)

    MathSciNet  MATH  Google Scholar 

  4. Makarov B. M., Samarskij V. G., A vector lattice structure of the spaces of absolutely summing operators, Matem. Zametki 43 (1988), no. 4, 498–508 (Russian); English transl. in Math. Notes 43 (1988), no. 4, 287–292.

    MATH  Google Scholar 

  5. Samarskij V. G., Absence of local unconditional structure in some operator spaces, Zapiski nauchn. semin. LOMI 92 (1979), 300–306. (Russian)

    MATH  Google Scholar 

  6. Schütt C., Unconditionality in tensor products, Israel J. Math. 31 (1978), 209–216.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dodds P., Fremlin D. H., Compact operators in Banach lattices, Israel J. Math. 34 (1979), 287–320.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Lindenstrauss J., Tzafriri L., Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.

    Book  MATH  Google Scholar 

  2. Mitjagin B. S., The homotopy structure of a linear group of a Banach space, Uspekhi Mat. Nauk 25 (1970), no. 5(155), 63–106 (Russian); English transl. in Russian Math. Surv. 25 (1970), no. 5, 59–104.

    MathSciNet  Google Scholar 

  3. Edelstein I., Mityagin B., Semenov E., The linear groups of C and L 1 are contractible, Bull. Acad. Polon. Sci., Ser. Math. 18 (1970), no. 1, 27–33.

    MathSciNet  MATH  Google Scholar 

  4. Semenov E. M., Tsirelson B. S., The problem of smallness of operator blocks in L p spaces, Zeit. Anal. Anwendungen 2 (1983), no. 4, 367–373.

    MathSciNet  Google Scholar 

  5. Krein S. G., Petunin Ju. I., Semenov E. M., Interpolation of Linear Operators, AMS Providence, 1982.

    Google Scholar 

  6. Semenov E. M., Shteinberg A. M., Operator blocks in L p,θ -spaces, Dokl. Akad. Nauk SSSR 272 (1983), no. 1, 38–40 (Russian); English transl. in Sov. Math. Dokl 28 (1983), 333–335.

    MathSciNet  Google Scholar 

References

  1. Pisier G., Factorization of operators through L p,∞ or L p,1 and non-commutative generalization, Math. Ann. 276 (1986), 105–196.

    Article  MathSciNet  MATH  Google Scholar 

  2. Semenov E. M., Shteinberg A. M., Orlicz property of symmetric spaces, Doklady AN SSSR 314 (1990), no. 6, 1941–1944 (Russian); English transl. in Soviet Math. Dokl. 42 (1991), no. 2, 679–682.

    Google Scholar 

  3. Talagrand M., Cotype of operators from C(K), Invent.-Math. 107 (1992), no. 1, 1–40.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Bourgain J., A counterexample to a complementation problem, Comp. math. 43 (1981), 133–144.

    MathSciNet  MATH  Google Scholar 

  2. Bourgain J., New classes of L p, Springer Lecture Notes in Mathematics 889 (1981).

    Google Scholar 

  3. Kaplansky I., Commutative rings, Allyn and Bacon, Boston, 1970.

    MATH  Google Scholar 

  4. Köthe G., Hebbare Lokalkonvexe Räume, Math. Ann. 165 (1966), 181–195.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lindenstrauss J., Pelczyński A., Absolutely summing operators inL 1 -spaces and their applications, Studia math. 29 (1968), 275–326.

    MathSciNet  MATH  Google Scholar 

  6. Wodzicki M., unpublished notes (OSU, Columbus, February 1991).

    Google Scholar 

References

  1. Zaharjuta V. P., Spaces of functions of a single variable that are analytic in open sets and on compacta, Mat. Sb. 82 (1970), no. 1, 84–98. (Russian)

    MathSciNet  Google Scholar 

  2. Landkof N. S., Fundamentals of modern potential theory, Izdat. “Nauka”, Moscow, 1966 (Russian): English transl. 1972, Springer-Verlag, New York-Heidelberg.

    Google Scholar 

  3. Zaharjuta V. P., Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, I,II. Teor. Funkts. Funktsional. Anal. i Prilozhen. 19 (1974), 133–157; 21 (1974), Kharkov, 65–83. (Russian)

    MathSciNet  Google Scholar 

  4. Zaharjuta V. P., Continuable bases in spaces of analytic functions of one and several variables, Sib. Matem. Zhurn. 8 (1967), no. 2, 277–292. (Russian)

    MathSciNet  Google Scholar 

  5. Dragilev M. M., Zaharjuta V. P., Khaplanov M. G., On certain problems concerning bases of analytic functions, Actual problems of science, Rostov-on-Don, 1967, pp. 91–102. (Russian)

    Google Scholar 

  6. Unsolved Problems, Proceedings of the International Colloquium on Nuclear Spaces and Ideals in Operator Algebras, Warsaw, 1969, Warszawa-Wroclaw, 1970, pp. 467–483.

    Google Scholar 

  7. Zakharyuta V. P., Kadampatta S. N., Existence of continuable bases in spaces of functions that are analytic on compacta, Mat. Zametki 27 (1980), no. 5, 701–713 (Russian); English transl. in Math. Notes 27 (1980), no. 5, 1334–1340.

    MathSciNet  MATH  Google Scholar 

  8. Zaharjuta V. P., Skiba, N. I., Estimates of the n-widths of certain classes of functions that are analytic on Riemann surfaces, Mat. Zametki 19 (1976), no. 6, 899–911 (Russian); English transl. in Math. Notes 19 (1976), no. 6, 525–532.

    MathSciNet  Google Scholar 

  9. Semiguk O. S., On existence of general bases in the space of analytic function on a compact Riemann surface, Manuscript deposed in VINITI, no. 620-77, Univ. of Rostov-on-Don, Rostov-on-Don, 1977. (Russian)

    Google Scholar 

  10. Widom H., Rational approximation and n-dimensional diameter, J. Approximation Theory 5 (1972), no. 2, 343–361.

    Article  MathSciNet  MATH  Google Scholar 

  11. Skiba N. I., On an upper estimation of n-diameters of one class of holomorphic functions, Collection of papers of young researches of the department of mathematics, Deposed in VINITI, no 1593-78, RIMI, Rostov-on-Don 1978. (Russian)

    Google Scholar 

  12. Nguen Thanh Van, Bases de Schauder dans certains espaces de fonctions holomorphes, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 2, 169–253.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Zakharyuta V. P., Isomorphism of spaces of analytic functions, Doklady Akad. Nauk SSSR 255 (1980), no. 1, 11–14 (Russian); English transl in Soviet Math. Dokl. 22 (1980), no. 3, 631–634.

    MathSciNet  MATH  Google Scholar 

  2. Vogt D., Eine Charakterisierung der Potenzreihenräume vom endlichen Typ und ihre Folgerungen, Manuscr. Math. 37 (1982), 269–301.

    Article  MathSciNet  MATH  Google Scholar 

  3. Vogt D., Wagner M. J., Charakterisierung der Unterräume und Quotientenräumeder nuklearen stabilen Potenzreihenräume vom unendlichen Typ, Studia Math. 70 (1981), no. 1, 63–80.

    MathSciNet  MATH  Google Scholar 

References

  1. Zaharjuta V. P., On the isomorphism and quasiequivalence of bases for Köthe power spaces, Dokl. Akad. Nauk SSSR 221 (1975), no. 4, 772–774 (Russian); English transl. in Soviet Math. Dokl. 16 (1975).

    MathSciNet  Google Scholar 

  2. Zaharjuta V. P., The isomorphism and quasiequivalence of bases for Köthe echelon spaces, Theory of operators in linear spaces, Proc. Seventh Winter School, Drogobych, 1974, Moscow, pp. 101–126. (Russian)

    Google Scholar 

  3. Zaharjuta V. P., Generalized Mityagin invariants and a continuum of pairwise nonisomorphic spaces of analytic functions, Funkts. Analiz i Prilozh. 11 (1977), no. 3, 24–30 (Russian); English transl. in Funct. Anal. and Appl. 11 (1977), no. 3, 182–188.

    MathSciNet  Google Scholar 

  4. Zaharjuta V. P., Some linear topological invariants, and the isomorphism of the tensor products of the centers of scales, Izv. Severo-Kavkaz. Nauchn. Centra Vyss Skoly (1974), no. 4, 62–64. (Russian)

    MathSciNet  Google Scholar 

  5. Vogt D., Charakterisierung der Unterräume von S, Math. Z. 155 (1977), 109–117.

    Article  MathSciNet  MATH  Google Scholar 

  6. Vogt D., Wagner M. J., Charakterisierung der Quotientenräume von S und eine Vermutung von Martineau, Studia Math. 67 (1980), 225–240.

    MathSciNet  MATH  Google Scholar 

  7. Goncharov A. P., Zakharyuta V. P., Linear topological invariants and the spaces of infinitely differentiable functions, Math. analysis and its appl., Interuniv. Work Collect. (1985), Rostov, 18–27. (Russian).

    Google Scholar 

References

  1. Berenstein C. A., Taylor B. A., A new look at interpolation theory for entire functions of one variable, Adv. of Math. 33 (1979), 109–143.

    Article  MathSciNet  MATH  Google Scholar 

  2. Gel'fand I. M., Shilov G. E., Verallgemeinerte Funktionen II, III, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962.

    Google Scholar 

  3. Haslinger F., Meyer M., Abel-Gončarov approximation and interpolation, preprint.

    Google Scholar 

  4. Köthe G., Topologische lineare Räume, Springer Verlag, Berlin, Heidelberg, New York, 1966.

    Book  MATH  Google Scholar 

  5. Martineau, A., Equations différentielles d'ordre infini, Bull. Soc. Math. de France 95 (1967), 109–154.

    MathSciNet  MATH  Google Scholar 

  6. Mityagin B. S., Nuclearity and other properties of spaces of type S, Trudy Mosk. Mat. Ob-va 9 (1960), 317–328 (Russian); English transl. in Amer. Math. Soc. Transl. 93 (1970), 45–60.

    MathSciNet  MATH  Google Scholar 

  7. Rolewicz, S., Metric Linear Spaces, Monographie Matematyczne, vol. 56, Warsaw, 1972.

    Google Scholar 

  8. Taylor, B. A., On weighted polynomial approximation of entire functions, Pacif. J. Math. 36 (1971), 523–539.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Haslinger F., Weighted spaces of entire functions, Indiana Univ. Math. J. 35 (1986), no. 1, 193–208.

    Article  MathSciNet  MATH  Google Scholar 

  2. Haslinger F., Smejkal M., Representation and duality in weighted Fréchet spaces of entire functions, Lecture Notes Math. 1275 (1987), 168–196.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Aizenberg L. A., The expansion of holomorphic functions of several complex variables in partial fractions, Sib. Matem. Zhurnal 8 (1967), no. 5, 1124–1142. (Russian)

    MathSciNet  MATH  Google Scholar 

  2. Aizenberg L. A., Linear convexity in C n and the distribution of the holomorphic functions, Bull Acad. Polon. Sci., Ser. mat. 15 (1967), no. 7, 487–495. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Aizenberg L. A., Trutnev V. M., On a method for the Borel summation of n-fold power series, Sib. Matem. Zhurnal 12 (1971), no. 6, 1398–1404. (Russian); English transl. in Siberian Math. J. 12 (1971), no. 6, 1011–1015.

    MATH  Google Scholar 

  4. Aizenberg L. A., Gubanova A. S., The domains of holomorphy of functions with real or nonnegative Taylor coefficients, Teor. Funkts., Funktsion. Analiz i Prilozh. 15 (1972), 50–55. (Russian)

    MathSciNet  Google Scholar 

  5. Trutnev V. M., Properties of functions that are holomorphic on strongly linearly convex set, Properties of holomorphic functions of several complex variables. Krasnoyarsk, 1973, pp. 139–155. (Russian)

    Google Scholar 

  6. Aizenberg L. A., Yuzhakov A. P., Makarova L. Ya., Linear convexity inn, Sib. Matem. Zhurnal 9 (1968), no. 4, 731–746. (Russian)

    MATH  Google Scholar 

  7. Leray, J., Le calcul différentiel et intégral sur une variété analytique complexe, Ediz. Cremonese, Rome, 1965 (French); Russian transl. in 1961, Inostr. Lit., Moscow.

    MATH  Google Scholar 

  8. Aizenberg L. A., Integral representations of functions which are holomorphic in convex region ofn space. Doklady Akad. Nauk SSSR 151 (1963), 1247–1249 (Russian); English transl. in Soviet Math. Dokl. 4 (1963), no. 4, 1149–1152.

    MathSciNet  Google Scholar 

  9. Aizenberg L. A., The general form of a linear continuous functional in spaces of functions that are holomorphic in convex domains ofn, Doklady Akad. Nauk SSSR 166 (1966), 1015–1018 (Russian); English transl. in Soviet Math. Dokl. 7 (1966), no. 1, 198–202.

    MathSciNet  Google Scholar 

References

  1. Znamenskii S. V., A geometric criterion for strong linear convexity, Funktsion. Anal. i Prilozhen. 13 (1979), no. 3, 83–84 (Russian); English transl. in Funct. Anal. and its Appl. 13 (1979), no. 3, 224–225.

    Article  MathSciNet  Google Scholar 

  2. Znamenskii S. V., The equivalence of different definitions of strongly linear convexity, International Conference on Complex Analysis and Applications. Varna, September 20–27, 1981 p. 30. (Russian)

    Google Scholar 

  3. Zelinskii Yu. B., On the strongly linear convexity, International Conference on Complex Analysis and Applications. Varna, September 20–27, 1981, p. 198.

    Google Scholar 

  4. Zelinskii, Yu. B., On geometrical criteria for strong linear convexity, Doklady Akad. Nauk SSSR 261 (1981), no. 1, 11–13 (Russian); English transl. in Soviet Math. Dokl 24 (1981) no. 3, 449–451.

    MathSciNet  Google Scholar 

References

  1. Martineau A., Sur les fonctionneles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 9 (1963), 1–164.

    Article  MathSciNet  MATH  Google Scholar 

  2. Björk J.-E., Every compact set inn is a good compact set, Ann. Inst. Fourier 20 (1970), no. 1, 493–498.

    Article  MathSciNet  MATH  Google Scholar 

  3. Kiselman C. O., Compact d'unicité pour les fonctionnelles analytiques en une variable, C. R. Acad. Sci. Paris 266 (1969), no. 13, A661–A663.

    MathSciNet  Google Scholar 

  4. Kiselman C. O., On unique supports of analytic functionals, Arkiv för Math. 16 (1965), no. 6, 307–318.

    MathSciNet  MATH  Google Scholar 

  5. Martineau A., Unicité du support d'une fonctionnelle analytique: un théorème de C. O. Kiselman, Bull. Soc. Math. France 92, (1968), 131–141.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor P. Havin Nikolai K. Nikolski

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Kisliakov, S.V. (1994). Banach spaces. In: Havin, V.P., Nikolski, N.K. (eds) Linear and Complex Analysis Problem Book 3. Lecture Notes in Mathematics, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0100202

Download citation

  • DOI: https://doi.org/10.1007/BFb0100202

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57870-3

  • Online ISBN: 978-3-540-48367-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics