Skip to main content

Effective operators in a topological setting

  • Conference paper
  • First Online:
Computation and Proof Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1104))

Abstract

It is the aim of this paper to present a uniform generalization of both the Myhill/Shepherdson and the Kreisel/Lacombe/Shoenfield theorems on effective operators. To this end we consider countable topological T o-spaces that satisfy certain effectivity requirements which can be verified for both the set of all partial recursive functions and for the set of all total recursive functions, and we show that under appropriate further conditions all effective operators between such spaces are effectively continuous. From this general result we derive the above mentioned theorems and also the generalizations of these theorems which are due to Weihrauch, Moschovakis and Ceitin. There is a long history of interest in continuity theorems in recursive function theory, and such continuity results are basic in computer science when studying continuous partial orders introduced by Scott and by Eršov for studies of the semantics of the λ-calculus.

Supported by NSF Research Grant MCS 7609212A, University of Washington.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ceitin, G.S.: Algorithmic operators in constructive metric spaces. Trudy Mat. Inst. Steklov 67, 295–361 (1962); English transl., Amer. Math. Soc. Transl. (2) 64, 1–80 (1967).

    MathSciNet  Google Scholar 

  2. Egli, H., Constable, R.L.: Computability concepts for programming language semantics. Theoret. Comp. Sci. 2, 133–145 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  3. Eršov, Ju.L.: Computable functionals of finite types. Algebra i Logika 11, 367–437 (1972); English transl., Algebra and Logic 11, 203–242 (1972).

    MathSciNet  Google Scholar 

  4. —: Model C of partial continuous functionals. Logic Colloquium 76 (Gandy, R., Hyland, M., eds.), 455–467. Amsterdam: North-Holland (1977).

    Google Scholar 

  5. Friedberg, R.: Un contre-exemple relatif aux fonctionelles récursives. Compt. Rend. Acad. Sci. Paris 247, 852–854 (1958).

    MathSciNet  MATH  Google Scholar 

  6. Helm, J.: On effectively computable operators. Zeitschr. f. Math. Logik Grundl. d. Math. 17, 231–244 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  7. Kreisel, G., Lacombe, D., Shoenfield, J.: Partial recursive functionals and effective operations. Constructivity in Mathematics (Heyting, A., ed.), 290–297. Amsterdam: North-Holland (1959).

    Google Scholar 

  8. Lachlan, A.: Effective operations in a general setting. J. Symbolic Logic 29, 163–178 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  9. Myhill, J., Shepherdson, J.C.: Effective operations on partial recursive functions. Zeitschr. f. math. Logik Grundl. d. Math. 1, 310–317 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  10. Moschovakis, Y.N.: Recursive analysis. Ph.D. Thesis, Univ. of Wisconsin, Madison, Wis. (1963).

    Google Scholar 

  11. —: Recursive metric spaces. Fund. Math. 55, 215–238 (1964).

    MathSciNet  MATH  Google Scholar 

  12. Pour-El, M.B.: A comparison of five “computable” operators. Zeitschr. j. math. Logik Grundl. d. Math. 6, 325–340 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  13. Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability. New York: McGraw-Hill (1967).

    MATH  Google Scholar 

  14. Scott, D.: Outline of a mathematical theory of computation. Techn. Monograph PRG-2, Oxford Univ. Comp. Lab. (1970).

    Google Scholar 

  15. Weihrauch, K., Deil, Th.: Berechenbarkeit auf cpo-s. Schriften zur Angew. Math. u. Informatik Nr. 63, RWTH Aachen (1980).

    Google Scholar 

  16. Young, P.: An effective operator, continuous but not partial recursive. Proc. Amer. Math. Soc. 19, 103–108 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  17. Young, P., Collins W.: Discontinuities of provably correct operators on the provably recursive real numbers. J. Symbolic Logic 48, 913–920 (1983).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Egon Börger Walter Oberschelp Michael M. Richter Brigitta Schinzel Wolfgang Thomas

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Spreen, D., Young, P. (1984). Effective operators in a topological setting. In: Börger, E., Oberschelp, W., Richter, M.M., Schinzel, B., Thomas, W. (eds) Computation and Proof Theory. Lecture Notes in Mathematics, vol 1104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0099496

Download citation

  • DOI: https://doi.org/10.1007/BFb0099496

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13901-0

  • Online ISBN: 978-3-540-39119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics