Skip to main content

Modelling sets

  • Conference paper
  • First Online:
Multifunctions and Integrands

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1091))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R. (1981). The Geometry of Random Fields. Wiley: N.Y.

    MATH  Google Scholar 

  • Baddeley, A. (1980). A limit theorem for statistics of spatial data. Advances in Applied Probability, 12, 447–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, P. (1981). Binary mosaics and the spatial pattern of heather. Biometrics, 37, 531–539.

    Article  Google Scholar 

  • Dupač, V. (1980). Parameter estimation in the Poisson field of discs. Biometrika, 67, 187–190.

    Article  MATH  Google Scholar 

  • Gerritse, G. (1983). Supremum self-decomposable random vectors. Report 8341, Department of Mathematics, Catholic University, Nijmegen, The Netherlands.

    MATH  Google Scholar 

  • Jurek, Z., and Vervaat, W. (1983). An integral representation of self decomposable Banach space valued random variables. Zeitschrift fur Wahscheinlichkeitstheorie verwand Gebiete, 62, 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, D. (1974). Foundations of a theory of random sets, in Stochastic Geometry ed. by E. Harding and D. Kendall, Wiley: N.Y.

    Google Scholar 

  • Marcus, A. (1966). A stochastic model of the formation and survival of lunar craters. Icarus, 5, 165–200.

    Article  Google Scholar 

  • Marcus, A. (1967). A multivariate immigration with multiple death process and applications to lunar craters. Biometrika, 54, 251–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Mase, S. (1979). Random compact convex sets which are infinitely divisible with respect to Minkowski addition. Advances in Applied Probability, 1, 834–850.

    Article  MathSciNet  MATH  Google Scholar 

  • Matern, B. (1960). Spatial variation. Meddelanden fran Statens Skogsforskningsinstitut, 49: 5.

    Google Scholar 

  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.

    Article  Google Scholar 

  • Matheron, G. (1975). Random Sets and Integral Geometry, Wiley: N.Y.

    MATH  Google Scholar 

  • Matthes, K., Kersten, J., and Mecke, J. (1974). Infinitely Divisible Point Processes, Wiley: N.Y.

    Google Scholar 

  • Ohser, J. (1980). On statistical analysis of the Boolean model. Elektronische Informationsverarbeitung und Kybernetik, 16, 651–653.

    MathSciNet  MATH  Google Scholar 

  • Ripley, B. (1981). Spatial Statistics. Wiley: N.Y.

    Book  MATH  Google Scholar 

  • Salinetti, G., and Wets, R. (1982). On the convergence in distribution of measurable multifunctions, normal integrands, stochastic processes and stochastic infima. Mathematics of Operations Research, submitted.

    Google Scholar 

  • Serra, J. (1980). The Boolean model and random sets. Computer Graphics and Image Processing, 12, 99–126.

    Article  Google Scholar 

  • Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press: London.

    MATH  Google Scholar 

  • Solomon, H. (1953). Distribution of the measure of a random two-dimensional set. The Annals of Mathematical Statistics, 24, 650–656.

    Article  MathSciNet  MATH  Google Scholar 

  • Trader, D. (1981). Infinitely divisible random sets. Ph.D. Thesis. Carnegie-Mellon University.

    Google Scholar 

  • Trader, D., and Eddy, W. (1981). A central limit theorem for Minkowski sums of random sets. Technical Report No. 228, Department of Statistics, Carnegie-Mellon University.

    Google Scholar 

  • Wolfe, S. (1982). On a continuous analogue of the stochastic difference equation Xn = ρXn + Bn. Stochastic Processes and their Applications, 12, 301–312.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gabriella Salinetti

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Cressie, N.A.C. (1984). Modelling sets. In: Salinetti, G. (eds) Multifunctions and Integrands. Lecture Notes in Mathematics, vol 1091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098807

Download citation

  • DOI: https://doi.org/10.1007/BFb0098807

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13882-2

  • Online ISBN: 978-3-540-39083-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics