Skip to main content

The Abramov-Rokhlin formula

  • Conference paper
  • First Online:
Ergodic Theory and Related Topics III

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1514))

Abstract

The Abramov-Rokhlin formula states that the entropy of a measure-preserving transformation S equals the sum of the entropy of a factor T of S and the entropy of S relative to T. We prove this formula for non-invertible transformations and apply it to skew-product transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Abramov and V. A. Rokhlin, The entropy of a skew product of measurepreserving transformations, Amer. Math. Soc. Transl. Ser. 2, 48 (1966), 255–265

    Article  Google Scholar 

  2. T. Bogenschütz, Entropy for random dynamical systems, Report No. 235, Institut für Dynamische Systeme, Universität Bremen 1990

    Google Scholar 

  3. H. Crauel, Lyapunov exponents and invariant measures of stochastic systems on manifolds, in: L. Arnold and V. Wihstutz (eds.), Lyapunov Exponents, Proceedings, Bremen 1984, Lecture Notes in Mathematics 1186, Springer 1986

    Google Scholar 

  4. P. Hulse, Sequence entropy relative to an invariant σ-algebra, J. London Math. Soc. (2) 33 (1986), 59–72

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Kifer, Ergodic Theory of Random Transformations, Birkhäuser 1986

    Google Scholar 

  6. B. Kamiński, An axiomatic definition of the entropy of a ℤd-action on a Lebesgue space, Studia Mathematica, T. XCVI (1990), 135–144

    MathSciNet  MATH  Google Scholar 

  7. F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc. (2) 16 (1977), 568–576

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Petersen, Ergodic Theory, Cambridge University Press 1983

    Google Scholar 

  9. J.-P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli, Israel J. Math. 21 (1975), 177–207

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Walters, Relative pressure, relative equilibrium states, compensation functions and many-to-one codes between subshifts, Trans. Amer. Math. Soc. 296 (1986), 1–31

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ulrich Krengel Karin Richter Volker Warstat

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Bogenschütz, T., Crauel, H. (1992). The Abramov-Rokhlin formula. In: Krengel, U., Richter, K., Warstat, V. (eds) Ergodic Theory and Related Topics III. Lecture Notes in Mathematics, vol 1514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097526

Download citation

  • DOI: https://doi.org/10.1007/BFb0097526

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55444-8

  • Online ISBN: 978-3-540-47076-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics