Skip to main content

On geometry of Orlicz spaces

  • Conference paper
  • First Online:
Probability Theory on Vector Spaces II

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 828))

Abstract

In terms of the function Φ it is established when Orlicz space LΦ does not contain l n uniformly and when it has some type or cotype.

We study some geometrical properties of Orlicz spaces. Namely using the results of [1] we establish when the given Orlicz space does not contain l n uniformly and when it has some type or cotype.

Let X be a real Banach space, X* the dual space and let (ɛk)k ∈ N be the sequence of independent random variables with P[ɛk=1]=P[ɛk=−1]=1/2 (the Bernoulli, or the Rademacher sequence). A Banach space X is said to be a space of type p, 0<p⩽2, if there exists a constant c>0 such that for each finite collection x1,...,xn of elements of X there holds the inequality

$$E\parallel \sum\limits_{k = 1}^n {x_k \varepsilon _k } \parallel _X^p \leqslant c\sum\limits_{k = 1}^n {\parallel x_k \parallel _X^p }$$

Here and below E denotes the mathematical expectation,

It is clear that every Banach space has type p,0<p⩽1.

A Banach space X is said to be a space of cotype q 2<q<∞, if there exists a constant c′>0 such that for each finite collection x1,...,xn of elements of X there holds the inequality

$$E\parallel \sum\limits_{k = 1}^n {x_k \varepsilon _k } \parallel _X^q \geqslant c'\sum\limits_{k = 1}^n {\parallel x_k \parallel _X^q .}$$

If X is of type p, 1<p⩽2, then X* is of cotype p′=p/p−1. Đenote by l n the Rn with the maximum-norm. We shall say that a Banach space X contains l n uniformly if for each ɛ>0 and any integer n there exists an injective linear operator J: l n → X such that ‖J‖‖J−1‖<1+ɛ. X does not contain l n uniformly if and only if it has certain cotype q ([2]).

Let (T, Σ, ϑ) be a positive σ-finite measure space and Φ : R+ → R+ denotes a convex continious non-decreasing and vanishing at zero function. For measurable function x: T → R define

$$\rho _\Phi (x) = \int\limits_T {\Phi (\left| {x(t)} \right|)d \vartheta (t)}$$

and denote LΦ=LΦ (T, Σ, ϑ) the collection of all measurable functions x with ρΦ(λ x)<∞ for some λ>0. LΦ is a vector space. Moreover, LΦ is Banach space under the norm

$$\left\| x \right\|_\Phi = \inf \{ \lambda > 0:\rho _\Phi (x/\lambda ) \leqslant 1\}$$

and this space is said to be Orlicz space.

By Δ2 we denote the family of functions Φ that satisfy the so-called Δ2 condition (i.e. Φ (2u)⩽c Φ (u) for some c>0 and every u ∈ R+). If Φ ∈ Δ2, then x ∈ LΦ if and only if ρΦ(x)<∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Chobanjan, Z.G. Gorgadze, V.I. Tarieladze, Gaussian covariances in Banach sulattices of Lo. (in Russian) Dokl.AN SSR, 241, 3(1978), 528–531; Soviet Math. Dokl., 19, 4 (1978), 885–888.

    Google Scholar 

  2. B. Maurey, G. Pisier, Caracterization d’une classe d’espaces de Banach par des series aleatoires vectorielles, C.R.Acad.Sci.Paris, 277 (1973), 687–690.

    MathSciNet  MATH  Google Scholar 

  3. S.A. Rakov, On Banach spaces for which Orlicz’s theorem does not hold. (in Russian), Mat.Zamet. 14, 1 (1973), 101–106.

    MathSciNet  Google Scholar 

  4. N.N. Vakhania, Probability distributions in Banach spaces. (in Russian), Metzniereba, Tbilisi 1971.

    Google Scholar 

  5. Z.G. Gorgadze, V.I. Tarieladze, Gaussian measuries in Orlicz spaces, Soobsc.AN Gruz.SSR 74, 3 (1974) 557–559.

    MathSciNet  MATH  Google Scholar 

  6. W. Matuszewska, W. Orlicz, On certain properties of φ-functions, Bull.Acad.Polon.Sci.Ser.Math.Astronom.Phys. 8, 7 (1960), 439–443.

    MathSciNet  MATH  Google Scholar 

  7. T. Figiel, J. Lidenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Mathematica, 139, 1–2 (1977), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Weron

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag

About this paper

Cite this paper

Gorgadze, Z.G., Tarieladze, V.I. (1980). On geometry of Orlicz spaces. In: Weron, A. (eds) Probability Theory on Vector Spaces II. Lecture Notes in Mathematics, vol 828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097394

Download citation

  • DOI: https://doi.org/10.1007/BFb0097394

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10253-3

  • Online ISBN: 978-3-540-38350-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics