Skip to main content

Adaptive finite element methods for conservation laws

  • Chapter
  • First Online:
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1697))

Abstract

The purpose of this lecture is to give an introductory overview of our recent work together with coworkers on computational methods for conservation laws, which are reliable in the sense that the computational error may be controled on a given tolerance level in a given norm, and efficient in the sence that the desired error control may be achieved at (nearly) minimal computational cost. To satisfy the desired criteria of reliability and efficiency, the computational methods are adaptive with feed back from the computational process. The adaptive methods are based on a posteriori error estimates, where the error is estimated in terms of the mesh size, the residual of the computed solution, and certain stability factors measuring relevant stability properties of the solution being approximated through the solution of an associated linearized dual problem. The a posteriori error estimates give stopping criteria guaranteeing the desired error control, and also serve as part of the modification criteria for adaptively choosing the computational mesh. We prove analytically that the stability factors in the basic model cases of shocks and rarefactions in one dimension, are of moderate size. We also present results from numerical computations of dual solutions and stability factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bertoluzza, F. Brezzi, C. Johnson and A. Russo, Dynamic computational subgrid modeling, Laboratorio Analisi Numerica, Univ of Pavia/Chalmers Finite Element Center. To appear 1997

    Google Scholar 

  2. E. Burman, Adaptive finite element methods for two-phase flow, Licentiate Thesis, Department of Mathematics, Chalmers University of Technology, Göteborg, 1996.

    MATH  Google Scholar 

  3. E. Burman, Adaptive finite element methods for two-phase flow, Ph d Thesis, Department of Mathematics, Chalmers University of Technology, Göteborg, to appear, 1996.

    MATH  Google Scholar 

  4. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations, Cambridge University Press/Studentlitteratur, 1996.

    Google Scholar 

  5. K. Eriksson, Introduction to Computational Mathematical Modeling, to appear 1998.

    Google Scholar 

  6. K. Eriksson, Introduction to Engineering Mathematics, to appear 1999.

    Google Scholar 

  7. K. Eriksson, Advanced Computational Differential Equations, to appear 1998.

    Google Scholar 

  8. K. Eriksson, Adaptive methods for differential equations, Acta Numerica, 1995.

    Google Scholar 

  9. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: A linear model problem, SIAM J. Numer. Anal., 28 (1991), pp. 43–77.

    Article  MathSciNet  MATH  Google Scholar 

  10. -, Adaptive finite element methods for parabolic problems II: Optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal., 32 (1995), pp. 706–740.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Eriksson, Adaptive finite element methods for parabolic problems III: Time steps variable in space. To appear.

    Google Scholar 

  12. -, Adaptive finite element methods for parabolic problems IV: Non-linear problems, SIAM J. Numer. Anal., 32 (1995), pp. 1729–1749.

    Article  MathSciNet  MATH  Google Scholar 

  13. -, Adaptive finite element methods for parabolic problems V: Long-time integration, SIAM J. Numer. Anal., 32 (1995), pp. 1750–1763.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Eriksson, Adaptive finite element methods for parabolic problems VI: Analytic semigroups, Preprint #1996-32, Department of Mathematics, Chalmers University of Technology, to appear in Siam J. Numer. Anal.

    Google Scholar 

  15. -, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp., 60 (1993), pp. 167–188.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Estep, A posteriori error bounds and global error control for approximations of ordinary differential equations, Siam J. Numer. Anal. 32 (1995), 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Johnson and D. Estep, On the computability of the Lorenz system, to appear in M3AS.

    Google Scholar 

  18. D. Estep, M. Larson and R. Williams, Estimating the error of numerical solutions of nonlinear reaction-diffusion equations, 1997.

    Google Scholar 

  19. P. Hansbo, The characteristic streamline diffusion method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 96 (1992), pp. 239–253.

    Article  MathSciNet  MATH  Google Scholar 

  20. -, The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 99 (1992), pp. 171–186.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Hansbo, Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables, J. Comput. Phys., (1993). In press.

    Google Scholar 

  22. P. HansboSpace-time oriented streamline diffusion methods for nonlinear conservation laws in one dimension, Commun. Numer. Methods Engrg., (1993). In press.

    Google Scholar 

  23. P. Hansbo and C. Johnson, Adaptive streamline diffusion finite element methods for compressible flow using conservation variables, Comput. Methods Appl. Mech. Engrg., 87 (1991), pp. 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 175–192.

    Article  MathSciNet  MATH  Google Scholar 

  25. -, A new approach to algorithms for convection problems based on exact transport+projection, Comput. Methods Appl. Mech. Engrg., 100 (1992), pp. 45–62.

    Article  MathSciNet  Google Scholar 

  26. -, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 107 (1993), pp 117–129.

    Article  MathSciNet  Google Scholar 

  27. C. Johnson and P. Hansbo, Adaptive finite element methods for small strain elasto-plasticity, in Finite Inelastic Deformations—Theory and Applications, D. Besdo and E. Stein, eds., Springer, Berlin, 1992, pp. 273–288.

    Chapter  Google Scholar 

  28. -, Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg., 101 (1992), pp. 143–181.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Johnson and A. Logg, Mechlab, to appear.

    Google Scholar 

  30. C. Johnson, R. Rannacher, and M. Boman, Numerics and hydrodynamic stability: Towards error control in CFD, SIAM J. Numer. Anal., 32 (1995), pp. 1058–1079.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Johnson, R. Rannacher, and R. Becker, Adaptive multigrid methods. 1995.

    Google Scholar 

  32. C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates, Comm Appl Pure Math. XLVIII (1995), 199–234.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Johnson, Convergence of the Discontinuous Galerkin method for scalar conservation laws, M3AS, 1996.

    Google Scholar 

  34. M. Larson, Analysis of adaptive finite element methods, Ph D Thesis, Department of Mathematics, Chalmers University of Technology, Göteborg, 1997.

    Google Scholar 

  35. M. Levenstam, Adaptive finite element simulation of welding, Department of Mathematics, Chalmers University of Technology, Göteborg.

    Google Scholar 

  36. P. Möller and P. Hansbo, On advancing front mesh generation in three dimensions, Preprint #1993-33, Department of Mathematics, Chalmers University of Technology, 1993.

    Google Scholar 

  37. R. Sandboge, Adaptive finite element methods for reactive flow, Ph D Thesis, Department of Mathematics, Chalmers University of Technology, Göteborg, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfio Quarteroni

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Johnson, C. (1998). Adaptive finite element methods for conservation laws. In: Quarteroni, A. (eds) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol 1697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0096354

Download citation

  • DOI: https://doi.org/10.1007/BFb0096354

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64977-9

  • Online ISBN: 978-3-540-49804-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics