Skip to main content

Iwasawa theory for elliptic curves

  • Chapter
  • First Online:
Arithmetic Theory of Elliptic Curves

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1716))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [B-D-G-P] K. Barré-Sirieix, G. Diaz, F. Gramain, G. Philibert, Une preuve de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  • [Be] M. Bertolini, Selmer groups and Heegner points in anticyclotomic ℤp-extensions, Compositio Math. 99 (1995), 153–182.

    MathSciNet  MATH  Google Scholar 

  • [BeDa1] M. Bertolini, H. Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), 413–456.

    Article  MathSciNet  MATH  Google Scholar 

  • [BeDa2] M. Bertolini, H. Darmon, Nontriviality of families of Heegner points and ranks of Selmer groups over anticyclotomic towers, Journal of the Ramanujan Math. Society 13 (1998), 15–25.

    MathSciNet  MATH  Google Scholar 

  • [B-G-S] D. Bernardi, C. Goldstein, N. Stephens, Notes p-adiques sur les courbes elliptiques, J. reine angew. Math. 351 (1984), 129–170.

    MathSciNet  MATH  Google Scholar 

  • [CoMc] J. Coates, G. McConnel, Iwasawa theory of modular elliptic curves of analytic rank at most 1, J. London Math. Soc. 50 (1994), 243–269.

    Article  MathSciNet  MATH  Google Scholar 

  • [CoGr] J. Coates, R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), 129–174.

    Article  MathSciNet  MATH  Google Scholar 

  • [CoSc] J. Coates, C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve, J. reine angew. Math. 375/376 (1987), 104–156.

    MathSciNet  MATH  Google Scholar 

  • [Cre] J.E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge University Press (1992).

    Google Scholar 

  • [D] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144 (1996), 137–166.

    Article  MathSciNet  MATH  Google Scholar 

  • [F] E.C. Friedman, Ideal class groups in basic ℤp1×...×ℤps-extensions of abelian number fields, Invent. Math. 65 (1982), 425–440.

    Article  Google Scholar 

  • [FeWa] B. Ferrero, L.C. Washington, The Iwasawa invariant μp vanishes for abelian number fields, Ann. of Math. 109 (1979), 377–395.

    Article  MathSciNet  MATH  Google Scholar 

  • [Gr1] R. Greenberg, On a certain l-adic representation, Invent. Math. 21 (1973), 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  • [Gr2] R. Greenberg, Iwasawa theory for p-adic representations, Advanced Studies in Pure Mathematics 17 (1989), 97–137.

    MathSciNet  MATH  Google Scholar 

  • [Gr3] R. Greenberg, Iwasawa theory for motives, LMS Lecture Notes Series 153 (1991), 211–233.

    MathSciNet  MATH  Google Scholar 

  • [Gr4] R. Greenberg, Trivial zeroes of p-adic L-functions, Contemporary Math. 165 (1994), 149–174.

    Article  MATH  Google Scholar 

  • [Gr5] R. Greenberg, The structure of Selmer groups, Proc. Nat. Acad. Sci. 94 (1997), 11125–11128.

    Article  MathSciNet  MATH  Google Scholar 

  • [Gr6] R. Greenberg, Iwasawa theory for p-adic representations II, in preparation.

    Google Scholar 

  • [Grva] R. Greenberg, V. Vatsal, On the Iwasawa invariants of elliptic curves, in preparation.

    Google Scholar 

  • [Gu1] L. Guo, On a generalization of Tate dualities with application to Iwasawa theory, Compositio Math. 85 (1993), 125–161.

    MathSciNet  MATH  Google Scholar 

  • [Gu2] L. Guo, General Selmer groups and critical values of Hecke L-functions, Math. Ann. 297 (1993), 221–233.

    Article  MathSciNet  MATH  Google Scholar 

  • [HaMa] Y. Hachimori, K. Matsuno, On finite Λ-submodules of Selmer groups of elliptic curves, to appear in Proc. Amer. Math. Soc.

    Google Scholar 

  • [Im] H. Imai, A remark on the rational points of abelian varieties with values in cyclotomic ℤp-extensions, Proc. Japan Acad. 51, (1975), 12–16.

    Article  MathSciNet  MATH  Google Scholar 

  • [Jo] J.W. Jones, Iwasawa L-functions for multiplicative abelian varities, Duke Math. J. 59 (1989), 399–420.

    Article  MathSciNet  MATH  Google Scholar 

  • [K] K. Kramer, Elliptic curves with non-trivial 2-adic Iwasawa μ-invariant, to appear in Acta Arithmetica.

    Google Scholar 

  • [Man] Yu.I. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 no. 6 (1971), 7–78.

    Article  MathSciNet  MATH  Google Scholar 

  • [Maz1] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266.

    Article  MathSciNet  MATH  Google Scholar 

  • [Maz2] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.

    Article  MathSciNet  MATH  Google Scholar 

  • [Maz3] B. Mazur, On the arithmetic of special values of L-functions, Invent. Math. 55 (1979), 207–240.

    Article  MathSciNet  MATH  Google Scholar 

  • [Maz4] B. Mazur, Modular curves and arithmetic, Proceedings of the International Congress of Mathematicians, Warszawa (1983), 185–211.

    Google Scholar 

  • [M-SwD] B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  • [M-T-T] B. Mazur, J. Tate, J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  • [Mi] J.S. Milne, Arithmetic Duality Theorems, Academic Press (1986).

    Google Scholar 

  • [Mo] P. Monsky, Generalizing the Birch-Stephens theorem, I. Modular curves, Math. Zeit. 221 (1996), 415–420.

    MathSciNet  MATH  Google Scholar 

  • [Pe1] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mémoire Soc. Math. France 17 (1984).

    Google Scholar 

  • [Pe2] B. Perrin-Riou, Variation de la fonction L p-adique par isogénie, Advanced Studies in Pure Mathematics 17 (1989), 347–358.

    MathSciNet  MATH  Google Scholar 

  • [Pe3] B. Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math. 89 (1987), 455–510.

    Article  MathSciNet  MATH  Google Scholar 

  • [Pe4] B. Perrin-Riou, Théorie d’Iwasawa p-adique locale et globale, Invent. Math. 99 (1990), 247–292.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ri] K.A. Ribet, Torsion points of abelian varieties in cyclotomic extensions, Enseign. Math. 27 (1981), 315–319.

    MathSciNet  Google Scholar 

  • [Ro] D.E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), 409–423.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ru1] K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988), 701–713.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ru2] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25–68.

    Article  MathSciNet  MATH  Google Scholar 

  • [R-W] K. Rubin, A. Wiles, Mordell-Weil groups of elliptic curves over cyclotomic fields, Progress in Mathematics 26 (1982), 237–254.

    Article  MathSciNet  MATH  Google Scholar 

  • [Sch1] P. Schneider, Iwasawa L-functions of varieties over algebraic number fields, A first approach, Invent. Math. 71 (1983), 251–293.

    Article  MathSciNet  MATH  Google Scholar 

  • [Sch2] P. Schneider, p-adic height pairings II, Invent. Math. 79 (1985), 329–374.

    Article  MathSciNet  MATH  Google Scholar 

  • [Sch3] P. Schneider, The μ-invariant of isogenies, Journal of the Indian Math. Soc. 52 (1987), 159–170.

    MathSciNet  MATH  Google Scholar 

  • [Se1] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, W.A. Benjamin (1968).

    Google Scholar 

  • [Se2] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics 5, Springer-Verlag (1964).

    Google Scholar 

  • [Si] J. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer-Verlag (1986).

    Google Scholar 

  • [St] G. Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), 75–106.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ta] J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206.

    Article  MathSciNet  MATH  Google Scholar 

  • [Wa1] L.C. Washington, The non-p-part of the class number in a cyclotomic ℤp-extension, Invent. Math. 49 (1978), 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  • [Wa2] L.C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer-Verlag (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlo Viola

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Greenberg, R. (1999). Iwasawa theory for elliptic curves. In: Viola, C. (eds) Arithmetic Theory of Elliptic Curves. Lecture Notes in Mathematics, vol 1716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0093453

Download citation

  • DOI: https://doi.org/10.1007/BFb0093453

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66546-5

  • Online ISBN: 978-3-540-48160-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics