Skip to main content

Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models

  • Chapter
  • First Online:
Probabilistic Models for Nonlinear Partial Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1627))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. A., Sobolev Spaces, Academic Press (1978).

    Google Scholar 

  2. Aldous, D., “Stopping times and tigtness”, Ann. Prob. 6, 335–340 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  3. Babovsky, H., Illner, R., “A convergence proof for Nanbu's simulation method for the full Boltzmann equation”, SIAM J. Numer. Anal. 26, 45–65 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. Billingsley, P., Convergence of Probability Measures, Wiley, (1969).

    Google Scholar 

  5. Bossy, M., Vitesse de Convergence d'Algorithmes Particulaires Stochastiques et Application à l'Equation de Burgers, Thèse de Doctorat de l'Université de Provence (1995).

    Google Scholar 

  6. Cerigniani, C., The Boltzmann Equation and its Applications, New York, Springer (1988).

    Book  Google Scholar 

  7. Di Perna, R.J., Lions, P.L., “On the Cauchy problem for the Boltzmann equation: global existence and weak stability”, Ann. Math. 130, 321–366 (1989).

    Article  Google Scholar 

  8. Ethier, S.N., Kurtz, T.G., “Markov Processes, Characterization and Convergence”, Wiley (1986).

    Google Scholar 

  9. Ferland, R., Fernique, X., Giroux, G., “Compactness of the fluctuations associated with some generalized nonlinear Boltzmann equations”, Can. J. Math. 44, 1192–1205 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandez, B., Méléard, S., “Multidimensional fluctuation on the McKean-Vlasov model: a Hilbertian approach”, Prépublication 211 of the Laboratoire de Probabilités, University Paris 6 (1994).

    Google Scholar 

  11. Fernandez, B., Méléard, S. “Asymptotic behaviour for interacting diffusion processes with space-time random birth”, Prépublication 295 du Laboratoire de Probabilités de l'Université Paris 6 (1995).

    Google Scholar 

  12. Gärtner, J., “On the McKean-Vlasov limit for interacting diffusions”, Math. Nachr. 137, 197–248 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  13. Gihman, I.I., Skorohod, A.V., Stochastic Differential Equations, Springer-Verlag (1972).

    Google Scholar 

  14. Graham, C., “Non linear diffusions with jumps”, Ann. I.H.P. 28–3, 393–402 (1992).

    MATH  Google Scholar 

  15. Graham, C., “McKean-Vlasov Ito-Skorohod equations, and non linear diffusions with discrete jump sets”, Stoch. Proc. and Appl. 40, 69–82 (1992).

    Article  MATH  Google Scholar 

  16. Graham, C., Méléard, S., “Propagation of chaos for a fully connected loss network with alternate routing”, Stoch. Proc. and Appl. 44, 159–180 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, C., Méléard, S., “Chaos hypothesis for a system interacting through shared resources”, Prob. Theory and Rel. Fields 100, 157–173 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, C., Méléard, S. “Convergence rate on path space for particle approximations to the Boltzmann equation”, Prépublication 249 du Laboratoire de Probabilités de l'Université Paris 6 (1994).

    Google Scholar 

  19. Hitsuda, M., Mitoma, I., “Tightness problem and stochastic evolution equations arising from fluctuation phenomena for interacting diffusions”, J. Mult. Anal. 19, 311–328 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  20. Illner, R., Neunzert, H., “On simulation methods for the Boltzmann equation”, Transport Theory Stat. Phys. 16, 141–154 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  21. Jacod, J., Shiryaev, A.N. Limit Theorems for Stochastic Processes, Springer (1987).

    Google Scholar 

  22. Joffe, A., Métivier, M., “Weak convergence of sequences of semimartingales”, Adv. Appl. Prob. 18, 20–65 (1986).

    Article  MATH  Google Scholar 

  23. Kac, M., “Foundation of kinetic theory”, Proc. Third Berkeley Symp. on Math. Stat. and Probab. 3, 171–197, Univ. of Calif. Press (1956).

    Google Scholar 

  24. Kunita, H., “Stochastic differential equations and stochastic flow of diffeomorphisms”, Ecole d'été de Probabilités de Saint-Flour XII-1982, Lect. Notes in Math. 1097, Springer (1984).

    Google Scholar 

  25. Léonard, C., “Une loi des grands nombres pour des systèmes de diffusions avec interaction et à coefficients non bornés”, Ann. I.H.P. 22, 237–262 (1986).

    MATH  Google Scholar 

  26. Léonard, C., “Large deviations for long range interacting particle systems with jumps”, Ann. I.H.P. 31–2, 289–323 (1995).

    MathSciNet  MATH  Google Scholar 

  27. Lepeltier, J.P., Marchal, B., “Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel”, Ann. I.H.P. 12–1, 43–100 (1976).

    MathSciNet  MATH  Google Scholar 

  28. McKean, H.P., “Propagation of chaos for a class of non linear parabolic equations”, in Lecture Series in Differential Equations, Vol. 7, 41–57 (1967).

    MathSciNet  Google Scholar 

  29. Méléard, S., “Convergence of the fluctuations associated with generalized mollified Boltzmann equations”, Prépublication 309 du Laboratoire de Probabilités de l'Université Paris 6 (1995).

    Google Scholar 

  30. Méléard, S., Roelly, S., “A propagation of chaos result for a system of particles with moderate interaction”, Stoch. Proc. and Appl. 26, 317–332 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  31. Méléard, S., Roelly, S., “Système de particules et mesures-martingales: un théorème de propagation du chaos”, Séminaire de Probabilités 22, Lect. Notes in Math. 1321, Springer (1988).

    Google Scholar 

  32. Métivier, M., Semimartingales, A Course On Stochastic Processes, de Gruyter (1982).

    Google Scholar 

  33. Mitoma, I., “An ∞-dimensional inhomogeneous Langevin's equation”, J.F.A. 61, 342–359 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  34. Nanbu, K., “Interrelations between various direct simulation methods for solving the Boltzmann equation”, J. Phys. Soc. Japan 52, 3382–3388 (1983).

    Article  Google Scholar 

  35. Neunzert, H., Gropengeisser, F., Struckmeier, J., “Computational methods for the Boltzmann equation”, Applied and Indust. Maths, (R. Spigler, ed.) Dordrecht: Kluwer Acad. Publ., 111–140 (1991).

    Chapter  Google Scholar 

  36. Oelschläger, K., “A martingale approach to the law of large numbers for weakly interacting stochastic processes”, Annals of Prob. 12, 458–479 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  37. Oelschläger, K., “A law of large number for moderately interacting diffusion processes”, Z. Wahrsch. Verw. Geb. 69, 279–322 (1985).

    Article  MATH  Google Scholar 

  38. Perthame, B., “Introduction to the theory of random particle methods for Boltzmann equation”, in Progresses on Kinetic Theory, World Scientific, Singapore (1994).

    Google Scholar 

  39. Perthame, B., Pulvirenti, M., “On some large systems of random particles which approximate scalar conservation laws”, Asympt. Anal. (to appear).

    Google Scholar 

  40. Pollar, D., Convergence of Stochastic Processes, Springer, New York (1984).

    Book  Google Scholar 

  41. Pulvirenti, M., Wagner, W., Zavelani Rossi, M.B., “Convergence of particle schemes for the Boltzmann equation”, Preprint 49, Institut fur Angewandte Analysis und Stochastik, Berlin (1993).

    MATH  Google Scholar 

  42. Rachev, S.T., Probability Metrics And The Stability of Stochastic Models, Chichester: John Wiley and Sons (1991).

    MATH  Google Scholar 

  43. Rebolledo, R., “La méthode des martingales appliquée à la convergence en loi des processus”, Mem. Soc. Math. France Suppl., 1–125 (1979).

    Google Scholar 

  44. Sznitman, A.S., “Equations de type Boltzmann spatialement homogènes”, Z. Washrsch. Verw. Geb. 66, 559–592 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  45. Sznitman, A.S., “Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated”, J.F.A. 56, 311–336 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  46. Sznitman, A.S., “A propagation of chaos result for Burgers's equation”, Probability Theory and Rel. Fields 71, 581–613 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  47. Sznitman, A.S., “Topics in propagation of chaos”, Ecole d'été de Probabilités de Saint-Flour XIX-1989, Lect. Notes in Math. 1464, Springer (1991).

    Google Scholar 

  48. Sznitman, A.S., “A fluctuation result for nonlinear diffusions”, in Infinite dimensional Analysis and Stochastic Processes, (S. Albeverio, ed.), Pitman, 145–160 (1985).

    Google Scholar 

  49. Tanaka, H., “Limit theorems for certain diffusion processes with interaction”, Taniguchi Symp. on Stochastic Analysis, Katata, 469–488 (1982).

    Google Scholar 

  50. Uchiyama, K., “Derivation of the Boltzmann equation from particle dynamics”, Hiroshima Math. J. 18, 245–297 (1988).

    MathSciNet  MATH  Google Scholar 

  51. Wagner, W., “A convergence proof for Bird's direct simulation method for the Boltzmann equation”, J. Stat Phys. 66, 1011–1044 (1992).

    Article  MATH  Google Scholar 

  52. Wagner, W., “A functional law of large numbers for Boltzmann type stochastic particle systems”, Preprint 93, Institut fur Angewandte Analysis und Stochastik, Berlin, (1994).

    Google Scholar 

  53. Yosida, K., Functional Analysis, Fifth Edition, Springer-Verlag (1978).

    Google Scholar 

  54. Zolotarev, V.M., “Probability metrics”, Theory Prob. Appl. 28–2, 278–302 (1983). *** DIRECT SUPPORT *** A00I6B81 00002

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Denis Talay Luciano Tubaro

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Méléard, S. (1996). Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In: Talay, D., Tubaro, L. (eds) Probabilistic Models for Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol 1627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0093177

Download citation

  • DOI: https://doi.org/10.1007/BFb0093177

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61397-8

  • Online ISBN: 978-3-540-68513-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics