Skip to main content

Yang-Mills theory and Gravitation: A comparison

  • Conference paper
  • First Online:
Geometric Techniques in Gauge Theories

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 926))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Annotated Bibliography

  1. H. Weyl, Gravitation und Elektrizität, Sitzungsber. Preuss. Akad. Wiss. (1918) 465. The notion of ‘gauge transformations’ is introduced here, for the first time, in connection with an attempt to unify gravitation and electromagnetism. Gauge transformations act on the metric of space-time.

    Google Scholar 

  2. Th. Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss. (1921) 966. Kaluza shows that the Einstein-Maxwell equations can be geometrically interpreted in a five-dimensional Riemannian space whose metric is independent on one of the coordinates, say x5. Gauge transformations are reduced to coordinate changes, x−i=xi (i=1,2,3,4) and x−5=x5+f(x1,x2,x3,x4).

    Google Scholar 

  3. E. Schrödinger, Über eine bemerkenswerte Eigenschaft der Quantenbahnen eines einzelnen Elektrons, Zeitschrift f. Phys. 12 (1922) 13–23.

    Article  Google Scholar 

  4. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée, Ann. Ecole Norm. 40 (1923) 325–412; 41 (1924) 1–25 and 42 (1925) 17–88. General relativity is extended and slightly modified by admitting a metric linear connection whose torsion tensor is related to the density of intrinsic angular momentum.

    MathSciNet  MATH  Google Scholar 

  5. O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Zeitschrift f. Phys. 37 (1926) 895. Klein extends the theory of Kaluza [2] by allowing a periodic dependence of the field variables on the fifth coordinate.

    Article  MATH  Google Scholar 

  6. F. London, Quantenmechanische Deutung der Theorie von Weyl, Zeitschrift f. Phys. 42 (1927) 375.

    Article  MATH  Google Scholar 

  7. H. Weyl, Elektron und Gravitation I, Zeitschrift f. Phys. 56 (1929) 330–352. Under the influence of the development of quantum mechanics [3,6], Weyl abandons his earlier interpretation of gauge transformations and accepts the one that connects a change in the electromagnetic potential to a transformation of the wave function of a charged particle.

    Article  MATH  Google Scholar 

  8. H. Weyl, A remark on the coupling of gravitation and electron, Phys. Rev. 77 (1950) 699–701. By varying the Einstein-Dirac action integral independently with respect to the metric tensor and the components of a (metric) linear connection, one arrives at a set of equations closely related to those considered by Cartan [4].

    Article  MathSciNet  MATH  Google Scholar 

  9. Ch. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, in: Coll. de Topologie (Espaces Fibrés), Bruxelles, 5–8 juin 1950, G. Thone, Liège et Masson, Paris, 1951. An (infinitesimal) connection is defined as an invariant distribution of horizontal linear spaces on the total space of a differentiable principal bundle. Cartan connections are defined in terms of soldering.

    Google Scholar 

  10. C.N. Yang and R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954) 191. The fundamental paper where gauge transformations are extended to the SU(2) group and quantization of the non-Abelian gauge field is considered.

    Article  MathSciNet  MATH  Google Scholar 

  11. T.D. Lee and C.N. Yang, Conservation of heavy particles and generalized gauge transformations, Phys. Rev. 98 (1955) 1501. The authors conjecture that all internal conserved quantities arise from invariance under gauge transformations.

    Article  Google Scholar 

  12. O. Klein, Generalisations of Einstein’s theory of gravitation considered from the point of view of quantum theory, Helv. Phys. Acta, Suppl. 10 (1956) 58.

    Google Scholar 

  13. R. Utiyama, Invariant-theoretical interpretation of interaction, Phys. Rev. 101 (1956) 1597. Gauge transformations and potentials are defined for an arbitrary Lie group. Gravitation is interpreted as a gauge theory of the Lorentz group.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Gell-Mann, The interpretation of the new particles as displaced charge multiplets, Nuovo CImento 4, Suppl. 2 (1956) 848. The principle of minimal coupling is formulated for electromagnetic interactions.

    Article  MathSciNet  Google Scholar 

  15. D.W. Sciama, On the analogy between charge and spin in general relativity, in: Recent Developments in General Relativity (Infeld’s Festschrift) pp. 415–439, Pergamon Press and PWN, Oxford and Warsaw, 1962. Weyl’s ideas [7,8] are extended to obtain a coupling between classical spin and a linear connection with torsion. By analogy with electromagnetism [14], a principle of minimal coupling is formulated for the gravitational field.

    Google Scholar 

  16. T.W.B. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys 2 (1961) 212. The gravitational field is treated as a gauge field. Full use is made of both ‘translations’ (diffeomorphisms of space-time) and Lorentz transformations (rotations of the orthonormal frames in tangent spaces). The field equations, derived from a variational principle of the Palatini type, lead to a theory with a connection which is metric, but not necessarily symmetric. References are given to Weyl [8], Yang and Mills [10], Utiyama [13] and Sciama [15].

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Lubkin, Geometric definition of gauge invariance, Annals of Phys. 23 (1963) 233–283. The significance of fibre bundles with connections to describe gauge configurations is recognized and used to relate the quantization of dual (magnetic) charges to the homotopy classification of bundles. Analogies between gravitation and Yang-Mills fields are stressed.

    Article  MathSciNet  Google Scholar 

  18. B.S. DeWitt, article in Relativité, groupes et topologie, p. 725, edited by C. DeWitt and B.S. DeWitt Gordon and Breach, New York, 1964. The Kaluza-Klein construction is generalized to non-Abelian gauge fields.

    Google Scholar 

  19. F. Hehl and E. Kröner, Über den Spin in der allgemeinen Relativitätstheorie: Eine notwendige Erweiterung der Einsteinschen Feldgleichungen, Zeitschrift f. Phys. 187 (1965) 478–489. General relativity with spin and torsion is shown to resemble a field theory of dislocations.

    Article  Google Scholar 

  20. B. O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459–469. A natural Riemannian metric is defined on the total space of a principal bundle with connection over a Riemannian base. The curvature of such a ‘generalized Kaluza-Klein’ metric is computed. This work has been extended by Gray [21] and Jensen [25].

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967) 715–737.

    MathSciNet  MATH  Google Scholar 

  22. A. Trautman, Fibre bundles associated with space-time, Lectures at King’s College, London, September 1967; published in Rep. Math. Phys. (Torún) 1 (1970) 29–62. Description of a natural isomorphism between the generalized Kaluza-Klein space [18] and the total space of a principal bundle underlying a Yang-Mills theory. The notions of naturality and relativity are related one to another.

    Google Scholar 

  23. R. Kerner, Generalization of the Kaluza-Klein theory for an arbitrary non-Abelian gauge group, Ann. Inst. Henri Poincaré 9 (1968) 143. The system of Einstein-Yang-Mills equations is derived from a geometric principle of least action. The author misses a ‘cosmological’ term arising in the non-Abelian case.

    MathSciNet  Google Scholar 

  24. W. Thirring, Remarks on five-dimensional relativity, in: The Physicist’s Conception of Nature, pp. 199–201, edited by J. Mehra, D. Reidel, Dordrecht, 1973. The Dirac equation on the Kaluza-Klein space leads, in a natural way, to CP-violation.

    Google Scholar 

  25. G.R. Jensen, Einstein metrics on principal fibre bundles, J. Diff. Geometry 8 (1973) 599–614.

    MathSciNet  MATH  Google Scholar 

  26. T.T. Wu and C.N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev. D12 (1975) 3845–3857. Connections on principal bundles are recognized to be relevant for the description of topologically non-trivial gauge configurations, such as those arising in the Bohm-Ahronov experiments. Dirac’s quantization condition for the magnetic monopole is shown to be equivalent to the classification of U(1)-bundles over S2 in terms of their first Chern classes.

    MathSciNet  Google Scholar 

  27. Y.M. Cho, Higher-dimensional unifications of gravitation and gauge theories, J. Math, Phys. 16 (1975) 2029–2035. The generalized Kaluza-Klein theory is developed and Kerner’s mistakes [23] are corrected.

    Article  MathSciNet  Google Scholar 

  28. Y.M. Cho, Einstein Lagrangian as the translational Yang-Mills Lagrangian, Phys. Rev. D14 (1976) 2521–2525.

    MathSciNet  Google Scholar 

  29. H.J. Bernstein and A.V. Phillips, Fiber bundles and quantum theory, Scientific American 245 (1981) 123–137. The ultimate sign of acceptance: Scientific American publishes an article on the geometry of gauge fields.

    Article  Google Scholar 

Some Recent Reviews

  1. E.S. Abers and B.W. Lee, Gauge theories, Phys. Rep. 9 (1973) 1–41.

    Article  Google Scholar 

  2. S. Weinberg, Recent progress in gauge theories of the weak, electromagnetic and strong interactions, Rev. Mod. Phys. 46 (1974) 255–277.

    Article  MathSciNet  Google Scholar 

  3. L.D. Faddeev, Differential-geometric structures and quantum field theory, Trudy Mat. Inst. Steklova 135 (1975)= Proc. Steklov Inst. Math. 1 (1978) 223–228.

    MathSciNet  Google Scholar 

  4. C.H. Gu and C.N. Yang, Some problems on the gauge field theories, Scientia Sinica, Part I: 18 (1975) 483–501; Part II: 20 (1977) 47–55; Part III 20 (1977) 177–185.

    MathSciNet  Google Scholar 

  5. B.D. Bramson, Relativistic angular momentum for asymptotically flat Einstein-Maxwell manifolds, Proc. Roy. Soc. (Lond.) A341 (1975) 463–490.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.C. Taylor, Gauge theories of weak interactions, Cambridge University Press, Cambridge, 1976.

    Google Scholar 

  7. F.W. Hehl, P. Von der Heyde, G.D. Kerlick and J.M. Nester, General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48 (1976) 393–416.

    Article  Google Scholar 

  8. A. Trautman, A classification of space-time structures, Rep. Math. Phys. (Toruń) 10 (1976) 297–310.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Mansouri and L.N. Chang, Gravitation as a gauge theory, Phys. Rev. D13 (1976) 3192–3200.

    MathSciNet  Google Scholar 

  10. W. Drechsler and M.E. Mayer, Fiber bundle techniques in gauge theories Lecture Notes in Phys, No 67, Springer, Berlin, 1977.

    Book  MATH  Google Scholar 

  11. J.P. Harnad and R.B. Pettitt, Gauge theory of the conformal group, in: Grouptheor. methods in physics, Proc. of the Fifth Intern. Colloquium, Academic Press, New York, 1977.

    Google Scholar 

  12. R. Stora, Continum gauge theories, in: New Developments in Quantum Field Theory and Statistical Mechanics, edited by M. Lévy and P. Mitter, Plenum, New York, 1977.

    Google Scholar 

  13. M.F. Atiyah, Geometrical aspects of gauge theories, Proc. Intern. Congress Math., vol II, pp. 881–885, Helsinki, 1978.

    MathSciNet  Google Scholar 

  14. A. Jaffe, Introduction to gauge theories, ibid. pp. 905–916.

    MathSciNet  Google Scholar 

  15. R. Hermann, Yang-Mills, Kaluza-Klein and the Einstein program, Math. Sci. Press, Brookline, Mass., 1978.

    MATH  Google Scholar 

  16. Y. Ne’eman and T. Regge, Gauge theory of gravity and supergravity on a group manifold, Riv. Nuovo Cimento 1: 5 (1978) 1.

    Article  MathSciNet  Google Scholar 

  17. W. Thirring, Gauge theories of gravitation, Lecture at XVII Universitätswochen für Kernphysik (Schladming, 1978), Acta Phys. Austr., Suppl. XIX (1978) 439.

    Google Scholar 

  18. P. Van Nieuwenhuizen and D.Z. Freedman (eds) Supergravity (Proc. of the Supergravity Workshop at Stony Brook, 1979) North-Holland, Amsterdam, 1979.

    MATH  Google Scholar 

  19. L. O’Raifeartaigh, Hidden gauge symmetry, Rep. Prog. Phys. 42 (1979) 159–224.

    Article  Google Scholar 

  20. A. Trautman, The geometry of gauge fields, Czech. J. Phys. B29 (1979) 107–116.

    Article  MathSciNet  Google Scholar 

  21. M. Daniel and C.M. Viallet, The geometrical setting of gauge theories of the Yang-Mills type, Rev. Mod. Phys 52 (1980) 175–197.

    Article  MathSciNet  Google Scholar 

  22. T. Eguchi, P.B. Gilkey, and A.J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rep. 66 (1980) 213–393.

    Article  MathSciNet  Google Scholar 

  23. A. Trautman, Fibre bundles, gauge fields, and graviation, in: General Relativity and Gravitation, vol. I, pp. 287–308, edited by A. Held, Plenum, New York, 1980.

    Google Scholar 

  24. F.W. Hehl, J. Nitsch, and P. Von der Heyde, Gravitation and the Poincaré gauge field theory with quadratic Lagrangian, ibid, pp. 329–355.

    Google Scholar 

  25. R. Jackiw, Introduction to the Yang-Mills quantum theory, Rev. Mod. Phys. 52 (1980) 661–673.

    Article  MathSciNet  Google Scholar 

  26. A. Trautman, On groups of gauge transformations, Lecture Notes on Phys. No. 129, pp. 114–120, Springer, Berlin, 1980.

    MATH  Google Scholar 

  27. J. Iliopoulos, Unified theories of elementary particle interactions, Contemp. Phys. 21 (1980) 159–183.

    Article  Google Scholar 

  28. W. Kopczyński, A fibre bundle description of coupled gravitational and gauge fields, Lecture Notes in Math. No 836, p. 462, Springer, Berlin, 1980.

    MATH  Google Scholar 

  29. H. Woolf (editor), Some Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein, Addison-Wesley, Reading, Mass., 1980.

    Google Scholar 

  30. G.H. Thomas, Introductory lectures on fibre bundles and topology for physicists, Riv. Nuovo Cimento 3: 4 (1980) 1–119.

    Article  Google Scholar 

  31. G. Mack, Physical principles, geometrical aspects, and locality properties of gauge field theories, Fortschritte d. Physik, 29 (1981) 135–185.

    Article  MathSciNet  Google Scholar 

  32. A. Trautman, Geometrical aspects of gauge configurations, Lectures at XX Universitätswochen für Kernphysik (Schladming, 1981), Acta Phys. Austr., Suppl. XXIII (1981) 401–432.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodolfo Martini Eduardus M. de Jager

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Trautman, A. (1982). Yang-Mills theory and Gravitation: A comparison. In: Martini, R., de Jager, E.M. (eds) Geometric Techniques in Gauge Theories. Lecture Notes in Mathematics, vol 926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092662

Download citation

  • DOI: https://doi.org/10.1007/BFb0092662

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11497-0

  • Online ISBN: 978-3-540-39192-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics