Skip to main content

Brauer group and diophantine geometry: A cohomological approach

  • Conference paper
  • First Online:
Brauer Groups in Ring Theory and Algebraic Geometry

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 917))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Birch and H.P.F. Swinnerton-Dyer The Hasse problem for rational surfaces, J. reine angew. Math. 274 (1975), 164–174.

    MathSciNet  MATH  Google Scholar 

  2. J.W.S. Cassels and A. Frőhlich, Algebraic Number Theory, Thompson, Washington, 1967.

    MATH  Google Scholar 

  3. J.-L. Colliot-ThélÚne, D. Coray et J.-J. Sansuc, Descente et principe de Hasse pour certaines variétés rationnelles, J. reine angew. Math. 320 (1980), 150–191.

    MathSciNet  MATH  Google Scholar 

  4. S. Eilenberg and S. MacLane, Algebraic cohomology groups and loops, Duke Math. J. 14 (1947), 435–463.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer (1977).

    Google Scholar 

  6. V.A. Iskovskih, A counterexample to the Hasse principle for a system of two quadratic forms in five variables, Mat. Zametki 10 (1971), 253–257 (Transl.: Math. Notes 10 (1971), 575–577).

    MathSciNet  Google Scholar 

  7. Ju. I. Manin, Cubic forms: Algebra, Geometry, Arithmetic, North-Holland, Amsterdam (1974).

    MATH  Google Scholar 

  8. I. Reiner, Maximal orders, Academic Press, New-York (1975).

    MATH  Google Scholar 

  9. J. Tate, Homology of Noetherian rings and local rings, Illinois J. of Math. 1 (1957).

    Google Scholar 

  10. M.-F. Vignéras, Arithmétique des AlgÚbres de Quaternions, Lecture Notes in Math. 800 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Freddy M. J. van Oystaeyen Alain H. M. J. Verschoren

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Hűrlimann, W. (1982). Brauer group and diophantine geometry: A cohomological approach. In: van Oystaeyen, F.M.J., Verschoren, A.H.M.J. (eds) Brauer Groups in Ring Theory and Algebraic Geometry. Lecture Notes in Mathematics, vol 917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092227

Download citation

  • DOI: https://doi.org/10.1007/BFb0092227

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11216-7

  • Online ISBN: 978-3-540-39057-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics