Skip to main content

Market imperfections, equilibrium and arbitrage

  • Chapter
  • First Online:
Financial Mathematics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1656))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, I. and Gale, D. (1993): On getting something for nothing, or how to make an infinite amount of money in a finite time, To appear in Math. Finance.

    Google Scholar 

  • Aiyagari, R., and M. Gertler (1991), “Asset returns with transaction costs and uninsured individual risk,” Journal of Monetary Economics, 27, p. 311–331.

    Article  Google Scholar 

  • Amihud, Y., and H. Mendelson (1991), “Liquidity, maturity, and the yields on U.S. Treasury securites,” Journal of Finance, 46, p. 1411–25.

    Article  Google Scholar 

  • Back, K., and S. Pliska (1990), “On the fundamental theorem of asset pricing with an infinite state space,” Journal of Mathematical Economics, 20, p. 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Bensaid, B., Lesne, J.P., Pagès, H., and J. Scheinkman (1992), “Derivative asset pricing with transaction costs,” Mathematical Finance, 2, p. 63–86.

    Article  MATH  Google Scholar 

  • Billingsley, P. (1986), Probability and Measure, Wiley: New York.

    MATH  Google Scholar 

  • Black, F., and M. Scholes (1973), “The pricing of options and corporate liabilities,” Journal of Political Economy, 81, p. 637–54.

    Article  MATH  Google Scholar 

  • Bourbaki, N. (1981), Espaces Vectoriels Topologiques, Masson: Paris.

    MATH  Google Scholar 

  • Cannon, J. (1984), “The one-dimensional heat equation,” in G-C. Rota, ed., Encyclopedia of Mathematics and its Applications, volume 23, Cambridge University Press: Cambridge.

    Google Scholar 

  • Cantor, D.G. and Lippman, S.A. (1983): Investment selection with imperfect capital markets, Econometrica, 51, 1121–1144.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantor, D.G. and Lippman, S.A. (1995): Optimal investment selection with a multitude of projects, Econometrica, 63/5, 1231–1241.

    Article  MATH  Google Scholar 

  • Carassus, L. and E. Jouini (1996), “Investment and arbitrage opportunities with short-sales constraints,” Mimeo.

    Google Scholar 

  • Clark, S. (1993), “The valuation problem in arbitrage price theory,” Journal of Mathematical Economics, 22, p. 463–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke, F. (1983), Optimization and Nonsmooth Analysis, Wiley: New York.

    MATH  Google Scholar 

  • Cochrane, J., and L. Hansen (1992), “Asset pricing explorations for macroeconomics,” NBER Macroeconomics Annual 1992, 7, p. 115–165.

    Article  Google Scholar 

  • Constantinides, G. (1986), “Capital market equilibrium with transaction costs,” Journal of Political Economy, 94, p. 842–62.

    Article  Google Scholar 

  • Cox, J., and S. Ross (1976), “The valuation of options for alternative stochastic processes,” Journal of Financial Economics, 3, p. 145–166.

    Article  Google Scholar 

  • Cox, J., Ross, S., and M. Rubinstein (1979), “Option pricing: a simplified approach,” Journal of Financial Economics, 7, p. 229–264.

    Article  MATH  Google Scholar 

  • Cox, J. and M. Rubinstein (1985), Options Markets, Prentice-Hall: New Jersey.

    Google Scholar 

  • Cvitanic, J., and I. Karatzas (1993), “Hedging contingent claims with constrained portfolios,” Annals of Applied Probability, 3, p. 652–681.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, M., and A. Norman (1990), “Portfolio selection with transaction costs,” Mathematics of Operations Research, 15, p. 676–713.

    Article  MathSciNet  MATH  Google Scholar 

  • Debreu, G. (1959), Theory of Value, Wiley: New York.

    MATH  Google Scholar 

  • Delbaen, F. (1992): Representing martingale measures when asset prices are continuous and bounded, Math. Finance, 2, 107–130.

    Article  MATH  Google Scholar 

  • Dellacherie, C. and P.-A. Meyer (1975), Probabilités et potentiel, Hermann: Paris.

    MATH  Google Scholar 

  • Dermody, J.C. and Rockafellar, R.T. (1991): Cash stream valuation in the face of transaction costs and taxes, Math. Finance, 1, 31–54.

    Article  MATH  Google Scholar 

  • Dermody, J.C. and Rockafellar, R.T. (1995): Tax basis and nonlinearity in cash stream valuation, Math. Finance, 5, 97–119.

    Article  MATH  Google Scholar 

  • Duffie, D., and C.-F. Huang (1985), “Implementing Arrow-Debreu equilibria by continuous trading of few long-lived securities,” Econometrica, 53, p. 1337–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Duffie, D., and C.-F. Huang (1986), “Multiperiod security market with differential information,” Journal of Mathematical Economics, 15, p. 283–303.

    Article  MathSciNet  MATH  Google Scholar 

  • Duffie, D., and T. Sun (1990), “Transaction costs and portfolio choice in a discrete-continuous time setting,” Journal of Economic Dynamics and Control, 14, p. 35–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Dumas, B., and E. Luciano (1991), “An exact solution to a dynamic portfolio choice problem under transactions costs,” Journal of Finance, 46, p. 577–95.

    Article  Google Scholar 

  • Dybvig, P. (1988a), “Distributional analysis of portfolio choice,” Journal of Business, 61, p. 369–93.

    Article  Google Scholar 

  • Dybvig, P. (1988b), “Inefficient dynamic portfolio strategies or how to throw away a million dollars in the stock market,” Review of Financial Studies, 1, p. 67–88.

    Article  Google Scholar 

  • Dybvig, P., and J. Ingersoll (1982), “Mean-variance theory in complete markets,” Journal of Business, 55, p. 233–51.

    Article  Google Scholar 

  • Dybvig, P., and S. Ross (1982), “Portfolio efficient sets,” Econometrica, 50, p. 1525–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Dybvig, P., and S. Ross (1985a), “Performance measurement using excess returns relative to a market line: differential information,” Journal of Finance, 40, p. 384–99.

    Google Scholar 

  • Dybvig, P., and S. Ross (1985b), “The analytics of performance measurement using a security market line,” Journal of Finance, 40, p. 401–16.

    Article  Google Scholar 

  • Dybvig, P., and S. Ross (1986), “Tax clienteles and asset pricing,” Journal of Finance, 41, p. 751–62.

    Google Scholar 

  • Dybvig, P., and C.-F. Huang (1988), “Nonnegative wealth, absence of arbitrage, and feasible consumption plans,” Review of Financial Studies, 1, p. 377–401.

    Article  Google Scholar 

  • Fan, K. (1952), “Fixed point and minimax theorems in locally convex topological linear spaces,” Proceedings of the National Academy of Sciences of the USA, 38, p. 121–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Figlewski, S. (1989), “Options arbitrage in imperfect markets,” Journal of Finance, 44, p. 1289–1311.

    Article  Google Scholar 

  • Fleming, W., and H. Soner (1993), Controlled Markov Processes and Viscosity Solutions, Springer-Verlag: New York.

    MATH  Google Scholar 

  • Gale, D. (1965): Optimal programs for sequential investment. Patterns of market behavior, ed. by M. J. Brennan. Providence, R.I.: Brown University Press.

    Google Scholar 

  • Gihman, I., and A. Skorohod (1972), Stochastic Differential Equations, Springer-Verlag: New York.

    Book  MATH  Google Scholar 

  • Gilster, J. and W. Lee (1984), “The effects of transaction costs and different borrowing and lending rates on the option pricing model: a note,” Journal of Finance, 39, p. 1215–22.

    Article  Google Scholar 

  • Girsanov, I. (1960), “On transforming a certain class of stochastic processes by absolutely continuous substitution of measures,” Theory Probability Appl., 5, p. 285–301.

    Article  MathSciNet  MATH  Google Scholar 

  • Grossman, S., and G. Laroque (1990), “Asset pricing and optimal portfolio choice in the presence of illiquid durable consumption goods,” Econometrica, 58, p. 25–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Hadar, J., and W. Russell (1969), “Rules for ordering uncertain prospects,” American Economic Review, 59, p. 25–34.

    Google Scholar 

  • Hansen, L.P., and R. Jagannathan (1991), “Implications of security market data for models of dynamic economies,” Journal of Political Economy, 99, p. 225–262.

    Article  Google Scholar 

  • Harrison, J., and D. Kreps (1979), “Martingales and arbitrage in multiperiod securities markets,” Journal of Economic Theory, 20, p. 381–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, J., and S. Pliska (1979), “Martingales and stochastic integrals in the theory of continuous trading,” Stochastic Processes and their Applications, 11, p. 215–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, J., and S. Pliska (1983), “A stochastic calculus model of continuous trading: complete markets,” Stochastic Processes and their Applications, 15, p. 313–16.

    Article  MathSciNet  MATH  Google Scholar 

  • He, H., and C.-F. Huang (1992), “Consumption-portfolio policies: an inverse optimal problem,” Journal of Economic Theory, forthcoming.

    Google Scholar 

  • He, H., and N. Pearson (1991), “Consumption and portfolio policies with incomplete markets and shortsale constraints: the infinite dimensional case,” Journal of Economic Theory, 54, p. 259–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Heaton, J., and D. Lucas (1992), “The effects of incomplete insurance markets and trading costs in a consumption-based asset pricing model,” Journal of Economic Dynamics and Control, 16, p. 601–620.

    Article  Google Scholar 

  • Hindy, A. (1991), “Viable prices in financial markets with solvency constraints”, Stanford University mimeo.

    Google Scholar 

  • Jacka, S. (1992), “A martingale representation result and an application to incomplete financial markets,” Mathematical Finance, 2, p. 239–50.

    Article  MATH  Google Scholar 

  • Jameson, G. (1974), Topology and Normed Spaces, Chapman and Hall: London.

    MATH  Google Scholar 

  • Jouini, E., and H. Kallal (1995a), “Martingales and arbitrage in securities markets with transaction costs,” Journal of Economic Theory, 66(1), p. 178–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Jouini, E., and H. Kallal (1995b), “Arbitrage in securities markets with short-sales constraints,” Mathematical finance, 5(3), p. 197–232.

    Article  MathSciNet  MATH  Google Scholar 

  • Jouini, E., and H. Kallal (1996a), “Efficient trading strategies with market frictions,” To appear in Review of Financial Studies.

    Google Scholar 

  • Jouini, E., and H. Kallal (1996b), “Equilibrium in securities markets with bid-ask spreads”, Mimeo.

    Google Scholar 

  • Jouini, E., P.-F. Koehl and N. Touzi (1995b), “Incomplete markets, transaction costs and liquidity effects,” Mimeo.

    Google Scholar 

  • Karatzas, I., and S. Shreve (1988), Brownian Motion and Stochastic Calculus, Springer-Verlag: New York.

    Book  MATH  Google Scholar 

  • Kreps, D. (1981), “Arbitrage and equilibrium in economies with infinitely many commodities,” Journal of Mathematical Economics, 8, p. 15–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Kreps, D. (1982), “Multiperiod securities and the efficient allocation of risk: a comment on the Black and Scholes option pricing model,” in J. Mc Call, ed., The Economics of Uncertainty and Information, University of Chicago Press: Chicago.

    Google Scholar 

  • Kunita, H. and S. Watanabe, (1967), “On square integrable martingales,” Nagoya Math. J., 30, p. 209–245.

    MathSciNet  MATH  Google Scholar 

  • Leland, H. (1985), “Option pricing and replication with transaction costs,” Journal of Finance, 40, p. 1283–1301.

    Article  Google Scholar 

  • Levy, H., and Y. Kroll (1978), “Ordering uncertain options with borrowing and lending,” Journal of Finance, 33, p. 553–74.

    Article  Google Scholar 

  • Luenberger, D., (1969), Optimization by vector space methods, John Wiley: New York.

    MATH  Google Scholar 

  • Luttmer, E. (1991), “Asset pricing in economies with frictions,” University of Chicago mimeo.

    Google Scholar 

  • Machina, M. (1982), “Expected utility analysis without the independence axiom,” Econometrica, 50, p. 277–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Magill, M., and G. Constantinides (1976), “Portfolio selection with transaction costs,” Journal of Economic Theory, 13, p. 245–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Mehra, R., and E. Prescott (1985), “The equity premium: a puzzle,” Journal of Monetary Economics, 15, p. 145–161.

    Article  Google Scholar 

  • Peleg, B. (1975), “Efficient random variables,” Journal of Mathematical Economics, 2, p. 243–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Peleg, B., and M. E. Yaari (1975), “A price characterization of efficient random variables,” Econometrica, 43, p. 283–92.

    Article  MathSciNet  MATH  Google Scholar 

  • Prisman, E. (1986) “Valuation of risky assets in arbitrage-free economies with frictions,” Journal of Finance, 41, p. 545–60.

    Article  Google Scholar 

  • Quirk, J., and R. Saposnik (1962), “Admissibility and measurable utility functions,” Review of Economic Studies, 29, p. 140–46.

    Article  Google Scholar 

  • Ross, S. (1987), “Arbitrage and martingales with taxation,” Journal of Political Economy, 95, p. 371–393.

    Article  Google Scholar 

  • Rockafellar, R. T., (1970), Convex Analysis, Princeton University Press: Princeton.

    Book  MATH  Google Scholar 

  • Schachermayer, W. (1994): Martingale measures for discrete-time processes with infinite horizon, Math. Finance, 4, 25–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Sharpe, W. (1990), Investments, fourth edition, Prentice Hall: Englewood Cliffs.

    Google Scholar 

  • Shorack, G. and J. Wellner (1986), Empirical Processes with Applications to Statistics, Wiley: New York.

    MATH  Google Scholar 

  • Soner, M., S. Shreve et J. Cvitanic (1995), “There is no nontrivial hedging portfolio for option pricing with transaction costs,” Annals of applied probability, 5, 327–355.

    Article  MathSciNet  MATH  Google Scholar 

  • Stigum, M. (1983), The Money Market, Dow Jones-Irwin: Homewood.

    Google Scholar 

  • Taksar, M., Klass, M., and D. Assaf (1988), “A diffusion model for optimal portfolio selection in the presence of brokerage fees,” Mathematics of Operations Research, 13, p. 277–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Tuckman, B. and J.-L. Vila (1992), “Arbitrage with holding costs: a utility based approach,” Journal of Finance, 47, p. 1283–1302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang J. Runggaldier

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Jouini, E. (1997). Market imperfections, equilibrium and arbitrage. In: Runggaldier, W.J. (eds) Financial Mathematics. Lecture Notes in Mathematics, vol 1656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092002

Download citation

  • DOI: https://doi.org/10.1007/BFb0092002

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62642-8

  • Online ISBN: 978-3-540-68356-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics