Skip to main content

Simple and multigraphic realizations of degree sequences

  • Contributed Papers
  • Conference paper
  • First Online:
Combinatorial Mathematics VIII

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 884))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Eggleton, Graphic sequences and graphic polynomials: a report, in Infinite and Finite Sets, Vol. 1, ed. A. Hajnal et al, Colloqu. Math. Soc. J. Bolyai 10 (North Holland, Amsterdam, 1975), 385–392.

    Google Scholar 

  2. R. B. Eggleton and D. A. Holton, Graphic sequences, Combinatorial Math. VI, Proc. 6th Australian Conf. on Combinatorial Math., Armidale, 1978 (Springer-Verlag, L. N. M. 748, 1979), 1–10.

    Google Scholar 

  3. R. B. Eggleton and D. A. Holton, The graph of type (0, ∞, ∞) realizations of a graphic sequence, op. cit., Combinatorial Math. VI, Proc. 6th Australian Conf. on Combinatorial Math., Armidale, 1978 (Springer-Verlag, L. N. M. 748, 1979), 41–54.

    Google Scholar 

  4. R. B. Eggleton and D. A. Holton, Pseudographic realizations of an infinitary degree sequence, Combinatorial Math. VII, Proc. 7th. Australian Conf. on Combinatorics Math., Newcastle, 1979 (Springer-Verlag, L. N. M. 829, 1980), 94–109.

    Google Scholar 

  5. P. Erdős and T. Gallai, Graphs with prescribed degrees of vertices (in Hungarian), Mat. Lapok, 11 (1960), 264–274.

    MATH  Google Scholar 

  6. S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph I, J. Soc. Indust. Appl. Math., 10 (1962), 496–506).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph II: Uniqueness, J. Soc. Indust. Appl. Math., 11 (1963), 135–147.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Havel, A remark on the existence of finite graphs (in Czech), Casopis Pest. Mat., 80 (1955), 477–480.

    MathSciNet  MATH  Google Scholar 

  9. M. Koren, Sequences with a unique realization by simple graphs, J. Combinatorial Theory, 21B (1976), 235–244.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. K. Senior, Partitions and their representative graphs, Amer. J. Math., 73 (1951), 663–689.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Taylor, Constained switchings in graphs, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kevin L. McAvaney

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Eggleton, R.B., Holton, D.A. (1981). Simple and multigraphic realizations of degree sequences. In: McAvaney, K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091817

Download citation

  • DOI: https://doi.org/10.1007/BFb0091817

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10883-2

  • Online ISBN: 978-3-540-38792-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics