Skip to main content

Approximation by vector-valued monotone increasing or convex functions

  • Chapter
  • First Online:
Spaces of Approximating Functions with Haar-like Conditions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1576))

  • 287 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Barbu and Th. Precupanu, Convexity and Optimization in Banach Spaces (revised and enlarged translation of convexitate si optimizare in spatii Banach), Sijthoff and noordhoff International Publishers, Netherlands, 1978.

    MATH  Google Scholar 

  2. R. B. Darst and S. Sahab, Approximation of continuous and quasi-continuous functions by monotone functions, J. Approx. theory 38(1983), 9–27.

    Article  MathSciNet  Google Scholar 

  3. R. B. Darst and R. Huotari, Monotone L 1-approximation on the unit n-cube, Proc. Amer. Math. Soc. 95(1985), 425–428.

    MathSciNet  MATH  Google Scholar 

  4. R. B. Darst and R. Huotari, Best L 1-approximation of bounded approximately continuous functions on [0, 1] by nondecreasing functions, J. Approx. Theory 43(1985), 178–189.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Helly, Über lineare Funktionaloperationen, Sber. Acad. Wiss. Wien. 121 (1921), 265–297.

    MATH  Google Scholar 

  6. R. Huotari, Best L 1-approximation of quasi-continuous functions on [0, 1] by nondecreasing functions, J. Approx. Theory 44(1985), 221–229.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Huotari and D. Legg, Best monotone approximation in L 1[0, 1], Proc. Amer. Math. Soc. 94(1985), 279–282.

    MathSciNet  MATH  Google Scholar 

  8. R. Huotari, A. D. Meyerowitz and M. Sheard, Best monotone approximations in L 1[0,1], J. Approx. Theory 47(1986), 85–91.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Huotari and D. Legg, Monotone approximation in several variables, J. Approx. Theory 47(1986), 219–227.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Huotari, D. Legg, A. D. Meyerowitz and D. Townsend, The natural best L 1-approximation by nondecreasing functions, J. Approx. Theory 52(1988), 132–140.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Huotari and D. Zwick, Approximation in the mean by convex functions, Numer. Funct. Anal. Optimiz. 10(1989), 489–498.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Huotari, D. Legg and D. Townsend, Existence of best n-convex approximants in L 1, Approx. Theory Appl. 5(1989), 51–57.

    MathSciNet  MATH  Google Scholar 

  13. R. Huotari, D. Legg and D. Townsend, Best L 1-approximation by convex functions of several variables, 475–481, Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991.

    Google Scholar 

  14. P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Lecture Notes 65, Marcel Dekker, New York, 1981.

    MATH  Google Scholar 

  15. S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Wiley-Interscience, New York, 1966.

    MATH  Google Scholar 

  16. K. Kitahara, On two new classes of locally convex spaces, Bull. Austral. Math. Soc. 28(1983), 383–392.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Kitahara, On a locally convex space admitting a fundamental sequence of strongly bounded subsets, Publicacions Secció de Matemàtiques 31(1987), 85–109.

    Article  MathSciNet  Google Scholar 

  18. K. Kitahara, On the space of vector-valued functions of bounded variation, Rocky Mountain J. Math. 20(1990), 165–171.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Kitahara and A. Nishi, Best approximations by vector-valued monotone increasing or convex functions, J. Math. Anal. Appl. 172(1993), 166–178.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Köthe, Topological Vector Spaces I (translated by D. J. H. Garling, Die Grundlehren der mathematischen Wissenschaften 159, Springer-Verlag, Berlin-Heidelberg-New York, 1969).

    Google Scholar 

  21. D. Legg and D. Townsend, Best monotone approximation in L ∞[0, 1], J. Approx. Theory 42(1984), 30–35.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Pinkus, Uniqueness in vector-valued approximation, J. Approx. Theory 73(1993), 17–92.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.

    MATH  Google Scholar 

  24. P. W. Smith and J. J. Swetits, Best approximation by monotone functions, J. Approx. Theory 49(1987), 398–403.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. J. Swetits and S. E. Weinstein, Construction of the best monotone approximation on L p[0, 1], J. Approx. Theory 61(1990), 118–130.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. J. Swetits, S. E. Weinstein and Y. Xu, Approximation in L p[0, 1] by n-convex functions, Num. Func. Anal. Optim. 11(1990), 167–179.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. A. Ubhaya, Isotone optimization. I, J. Approx. Theory 12(1974), 146–159.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. A. Ubhaya, Isotone optimization. II, J. Approx. Theory 12(1974), 315–331.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. A. Ubhaya, Uniform approximation by quasi-convex and convex functions, J. Approx. Theory 55(1988), 326–336.

    Article  MathSciNet  MATH  Google Scholar 

  30. V. A. Ubhaya, L p approximation by quasi-convex and convex functions, J. Math. Anal. Appl. 139(1989), 574–585.

    Article  MathSciNet  MATH  Google Scholar 

  31. V. A. Ubhaya, L p approximation by subsets of convex functions of sevaral variables, J. Approx. Theory 63(1990), 144–155.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. A. Ubhaya, S. E. Weinstein and Y. Xu, Best piecewise monotone unifrom approximation, J. Approx. Theory 63(1990), 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Zwick, Existence of best n-convex approximations, Proc. Amer. Math. Soc. 97(1986), 273–276.

    MathSciNet  MATH  Google Scholar 

  34. D. Zwick, Best approximation by convex functions, Amer. Math. Monthly 94 (1987), 528–534.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Zwick, Characterizing shape preserving L 1-approximation, Proc. Amer. Math. Soc. 103(1988), 1139–1146.

    MathSciNet  MATH  Google Scholar 

  36. D. Zwick, Some aspects of best n-convex approximation, J. Approx. Theory 56(1989), 30–40.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Zwick, Best L 1-approximation by generalized convex functions, J. Approx. Theory 59(1989), 116–123.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Kitahara, K. (1994). Approximation by vector-valued monotone increasing or convex functions. In: Spaces of Approximating Functions with Haar-like Conditions. Lecture Notes in Mathematics, vol 1576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091389

Download citation

  • DOI: https://doi.org/10.1007/BFb0091389

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57974-8

  • Online ISBN: 978-3-540-48404-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics