Skip to main content

On some numerical problems in semiconductor device simulation

  • Conference paper
  • First Online:
Mathematical Aspects of Fluid and Plasma Dynamics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1460))

Abstract

We recall in the introduction the main features of the drift-diffusion model for semiconductor devices, pointing out its physical meaning, its possible derivation, and its limits. Then, in Section 2, we present a mixed finite element method for the discretization of this model. Finally, using asymptotic analysis techniques, we compare the qualitative behaviour of the mixed method with other methods (classical conforming Galerking method and harmonic average methods). This asymptotic analysis provides some indication of the advantages of the mixed method.

Partially supported by C.N.R. Sp. proj. on Informatic systems and Parallel comput. and C.N.R. contr. 88.00326.01

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.N. Arnold-F. Brezzi: Mixed and non-conforming finite element methods: implementation, post-processing and error estimates. M 2 AN 19, 7–32, 1985.

    MathSciNet  MATH  Google Scholar 

  2. R.E. Bank-D.J. Rose-W. Fichtner: Numerical methods for semiconductor device simulation. IEEE Trans. El. Dev. 30, 1031–1041, 1983.

    Article  ADS  MATH  Google Scholar 

  3. F. Brezzi: On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. R.A.I.R.O. 8-R2, 129–151, 1974.

    MathSciNet  MATH  Google Scholar 

  4. F.Brezzi-L.D. Marini-P.Pietra: Two-dimensional exponential fitting and applications to drift-diffusion models. (To appear in SIAM J.Numer.Anal.).

    Google Scholar 

  5. F.Brezzi-L.D. Marini-P.Pietra: Numerical simulation of semiconductor devices. (To appear in Comp.Meths.Appl. Mech.and Engr.).

    Google Scholar 

  6. P.G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  7. B.X. Fraeijs de Veubeke: Displacement and equilibrium models in the finite element method. In: Stress Analysis, O.C. Zienkiewicz and G. Hollister eds., Wiley, New York, 1965.

    Google Scholar 

  8. L.D.Marini-P.Pietra: New mixed finite element schemes for current continuity equations. (Submitted to COMPEL).

    Google Scholar 

  9. P.A.Markowich: The Stationary Semiconductor Device Equations. Springer, 1986.

    Google Scholar 

  10. P.A.Markowich-C.Ringhofer-C.Schmeiser: Semiconductor equations. Springer, 1989. (To appear).

    Google Scholar 

  11. P.A. Markowich-M. Zlámal: Inverse-average-type finite element discretisations of self-adjoint second order elliptic problems, Math. of Comp. 51, 431–449, 1988.

    Article  Google Scholar 

  12. M.S. Mock: Analysis of a discretisation algorithm for stationary continuity equations in semiconductor device models II. COMPEL 3, 137–149, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Niclot-P. Degond-F. Poupaud: Deterministic particle simulations of the Boltzmann transport equation of semiconductors. J. Comp. Phys., 78, 313–350, 1988.

    Article  ADS  MATH  Google Scholar 

  14. F.Poupaud: On a system of nonlinear Boltzmann equations of semiconductor physics. (To appear in SIAM J. Math. Anal.).

    Google Scholar 

  15. P.A.Raviart-J.M.Thomas: A mixed finite element method for second order elliptic problems. In Mathematical aspects of the finite element method, Lecture Notes in Math. 606, 292–315, Springer, 1977.

    Google Scholar 

  16. S.Selberherr: Analysis and simulation of semiconductor devices. Springer, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giuseppe Toscani Vinicio Boffi Salvatore Rionero

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Brezzi, F., Marini, L.D., Markowich, P., Pietra, P. (1991). On some numerical problems in semiconductor device simulation. In: Toscani, G., Boffi, V., Rionero, S. (eds) Mathematical Aspects of Fluid and Plasma Dynamics. Lecture Notes in Mathematics, vol 1460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0091359

Download citation

  • DOI: https://doi.org/10.1007/BFb0091359

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53545-4

  • Online ISBN: 978-3-540-46779-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics