Skip to main content

Numerical integration of the Davidenko equation

  • Conference paper
  • First Online:
Numerical Solution of Nonlinear Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 878))

Abstract

Given a solution curve c(s) in the kernel H−1(0) of a smooth map H : IRN+1 → IRN, we consider a differential equation such that c(s) is an asymptotically stable solution. The equation may be viewed as a continuous version of Haselgrove's [17] predictor — corrector method and is a modification of Davidenko's [12] equation. In order to numerically trace c(s), this modified equation may be integrated by some standard IVP - code [40].

A curve — tracing algorithm is then discussed which makes one predictor step along the kernel of the Jacobian DH and one subsequent corrector (Newton) step perpendicular to this kernel. Instead of using the exact Jacobian, we update an approximate Jacobian in the sense of Broyden [9]. The algorithm differs somewhat from the recently described methods [15,20] in that we emphasize on "safe" curve — following. A simple and robust step — size control is given which may be improved in particular for less "nasty" problems.

Finally, it is discussed how such derivative — free curve — tracing methods may be used to deal with bifurcation points caused by an index jump in the sense of Crandall — Rabinowitz [11]. Instead of using a local perturbation [15] in the sense of Jürgens - Peitgen - Saupe [18], a technique more closely related to Sard's theorem [37] is proposed. This had the advantage that sparseness of DH is not destroyed near a bifurcation point, and hence the given method may be applied to large eigenvalue problems arising from discretizations of differential equations.

The following numerical examples are discussed:

  1. 1.

    A homotopy method for solving a difficult fixed point test problem [49].

  2. 2.

    A bifurcation problem for highly symmetric periodic solutions of a differential delay equation [18,28].

  3. 3.

    A secondary bifurcation problem for periodic solutions of a differential delay equation, where a highly symmetric solution bifurcates into a solution with less symmetries [18,28].

Some ideas are only roughly sketched and will be appropriately discussed elsewhere [16]. The numerical calculations were performed on a Hewlett Packard 85 and are illustrated by the standard plots which have a rather coarse grid.

Partially supported by the Deutsche Forschungsgemeinschaft through SFB 72, Bonn

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABRAHAM,R. and ROBBIN,J.: Transversal mappings and flows. W.A.Benjamin (1967).

    Google Scholar 

  2. ALEXANDER,J., KELLOGG,R.B., LI,T.Y. and YORKE,J.A.: Piecewise smooth continuation. Preprint, University of Maryland (1979).

    Google Scholar 

  3. ALLGOWER, E. and GEORG, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Review 22 (1980) 28–85.

    Article  MathSciNet  MATH  Google Scholar 

  4. ANGELSTORF,N.: Global branching and multiplicity results for periodic solutions of functional differential equations. In: Functional Differential Equations and Approximation of Fixed Points, H.O.Peitgen, H.O.Walther (eds), Springer Lecture Notes in Math. 730 (1979) 32–45.

    Google Scholar 

  5. BEN-ISRAEL, A.: A modified Newton — Raphson method for the solution of systems of equations. Israel J. Math. 3 (1965) 94–98.

    Article  MathSciNet  MATH  Google Scholar 

  6. BEN-ISRAEL,A. and GREVILLE,T.N.E.: Generalized inverses: theory and applications. Wiley-Interscience publ. (1974).

    Google Scholar 

  7. BRANIN, JR., F.H.: Widely convergent method for finding multiple solutions of simultaneous nonlinear equations. IBM J. Res. Develop. 16 (1972) 504–522.

    Article  MathSciNet  MATH  Google Scholar 

  8. BRANIN,JR.,F.H. and HOO,S.K.: A method for finding multiple extrema of a function of n variables. Numerical Methods for Nonlinear Optimization, F.Lootsma, ed., Academic Press (1972) 231–237.

    Google Scholar 

  9. BROYDEN, C.G.: A new method of solving nonlinear simultaneous equations. The Computer Journal 12 (1969) 94–99.

    Article  MathSciNet  MATH  Google Scholar 

  10. BROYDEN,C.G.: Quasi-Newton, or modification methods. Numerical Solution of Systems of Nonlinear Equations, G.Byrne and C.Hall (eds), Academic Press (1973) 241–280.

    Google Scholar 

  11. CRANDALL, M.G. and RABINOWITZ, P.H.: Bifurcation from simple eigenvalues. J. Functional Analysis 8 (1971) 321–340.

    Article  MathSciNet  MATH  Google Scholar 

  12. DAVIDENKO, D.: On a new method of numerical solution of systems of nonlinear equations. Doklady Akad. Nauk SSSR (N.S.) 88 (1953) 601–602.

    MathSciNet  Google Scholar 

  13. DENNIS JR., J.E. and SCHNABEL, R.B.: Least change secant updates for Quasi — Newton methods. SIAM Review 21 (1979) 443–459.

    Article  MathSciNet  MATH  Google Scholar 

  14. DEUFLHARD, P.: A stepsize control for continuation methods and its special application to multiple shooting techniques. Numer. Math. 33 (1979) 115–146.

    Article  MathSciNet  MATH  Google Scholar 

  15. GEORG,K.: On tracing an implicitly defined curve by Quasi — Newton steps and calculating bifurcation by local perturbation. To appear in: SIAM Journal of Scientific and Statistical Computing.

    Google Scholar 

  16. GEORG,K.: Zur numerischen Lösung nichtlinearer Gleichungssysteme mit simplizialen und kontinuierlichen Methoden. Unfinished manuscript.

    Google Scholar 

  17. HASELGROVE, C.B.: The solution of non-linear equations and of differential equations with two-point boundary conditions. Computing J. 4 (1961) 255–259.

    Article  MathSciNet  MATH  Google Scholar 

  18. JÜRGENS,H., PEITGEN,H.-O. and SAUPE,D.: Topological perturbations in the numerical study of nonlinear eigenvalue and bifurcation problems. in: Proceedings Symposium on Analysis and Computation of Fixed Points, S.M.Robinson (ed.), Academic Press, 1980, 139–181.

    Google Scholar 

  19. JÜRGENS, H. and SAUPE, D.: Methoden der simplizialen Topologie zur numerischen Behandlung von nichtlinearen Eigenwert-und Verzweigungsproblemen. Diplomarbeit, Bremen (1979).

    Google Scholar 

  20. KEARFOTT,R.B.: A derivative-free arc continuation method and a bifurcation technique. Preprint.

    Google Scholar 

  21. KELLER,H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, P.H.Rabinowitz (ed.), Academic Press (1977) 359–384.

    Google Scholar 

  22. KELLER,H.B.: Global homotopies and Newton methods. Numerical Analysis, Academic Press (1978) 73–94.

    Google Scholar 

  23. KELLER, H.B.: Constructive methods for bifurcation and nonlinear eigenvalue problems. Lect. Notes Math. 704 (1979) 241–251.

    Article  MathSciNet  Google Scholar 

  24. KRASNOSEL'SKII,M.A.: Topological methods in the theory of nonlinear integral equations. Pergamon Press (1964).

    Google Scholar 

  25. MENZEL, R. and SCHWETLICK, H.: Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen. Numer. Math. 30 (1978) 65–79.

    Article  MathSciNet  MATH  Google Scholar 

  26. MILNOR,J.W.: Topology from the differentiable viewpoint. University Press of Virginia (1969).

    Google Scholar 

  27. NUSSBAUM, R.D.: A global bifurcation theorem with applications to functional differential equations. J. Func. Anal. 19 (1975) 319–338.

    Article  MathSciNet  MATH  Google Scholar 

  28. PEITGEN,H.-O. and PRÜFER,M.: The Leray — Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems. In: Proceedings Functional Differential Equations and Approximation of Fixed Points, H.O.Peitgen and H.O.Walther (eds), Springer Lecture Notes in Math. 730 (1979) 326–409.

    Google Scholar 

  29. POTTHOFF,M.: Diplom thesis, in preparation.

    Google Scholar 

  30. PRÜFER,M.: Calculating global bifurcation. In: Continuation Methods, H.J.Wacker (ed.) Academic Press (1978) 187–213.

    Google Scholar 

  31. PRÜFER,M.: Simpliziale Topologie und globale Verzweigung. Dissertation, Bonn (1978).

    Google Scholar 

  32. RABINOWITZ, P.H.: Some global results for nonlinear eigenvalue problems. J. Functional Analysis 7 (1971) 487–513.

    Article  MathSciNet  MATH  Google Scholar 

  33. RHEINBOLDT,W.C.: Methods for solving systems of nonlinear equations. Regional conference series in applied mathematics 14, SIAM (1974).

    Google Scholar 

  34. RHEINBOLDT, W.C.: Numerical methods for a class of finite dimensional bifurcation problems. SIAM J. Numer. Anal. 15 (1978) 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  35. RHEINBOLDT, W.C.: Solution fields of nonlinear equations and continuation methods. SIAM J. Numer. Anal. 17 (1980) 221–237.

    Article  MathSciNet  MATH  Google Scholar 

  36. ROSEN, J.B.: The gradient projection method for nonlinear programming. Part II: Nonlinear constraints. Journal of Society of Industrial and Applied Mathematics 9 (1961) 514–532.

    Article  MATH  Google Scholar 

  37. SARD, A.: The measure of the critical values of differential maps. Bull. Amer. Math. Soc. 48 (1942) 883–890.

    Article  MathSciNet  MATH  Google Scholar 

  38. SCHMIDT,C.: Approximating differential equations that describe homotopy paths. Preprint No 7931, Univ. of Santa Clara (1979).

    Google Scholar 

  39. SCHWETLICK,H.: Numerische Lösung nichtlinearer Gleichungen. VEB Deutscher Verlag der Wissenschaften (1979).

    Google Scholar 

  40. SHAMPINE,L.F. and GORDON,M.K.: Computer solution of ordinary differential equations: The initial value problem. ordinary differential equations: The initial value problem. W.H.Freeman and Company (1975).

    Google Scholar 

  41. SMALE, S.: A convergent process of price adjustment and global Newton methods. Journal of Mathematical Economics 3 (1976) 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  42. TANABE,K.: A geometric method in nonlinear programming. Preprint STAN-CS-77-643, Stanford University (1977).

    Google Scholar 

  43. TANABE, K.: Continuous Newton-Raphson method for solving an underdetermined system of nonlinear equations. Nonlinear Analysis, Theory, Methods and Applications 3 (1979) 495–503.

    Article  MathSciNet  MATH  Google Scholar 

  44. TOINT, PH.L.: On sparse and symmetric matrix updating subject to a linear equation. Mathematics of Computation 31 (1977) 954–961.

    Article  MathSciNet  MATH  Google Scholar 

  45. TOINT, PH.L.: Some numerical results using a sparse matrix updating formula in unconstrained optimization. Mathematics of Computation 32 (1978) 839–851.

    Article  MathSciNet  MATH  Google Scholar 

  46. TOINT, PH.L.: On the superlinear convergence of an algorithm for solving a sparse minimization problem. SIAM J. Numer. Anal. 16 (1979) 1036–1045.

    Article  MathSciNet  MATH  Google Scholar 

  47. WACKER,H.J.: A summary of the developments on imbedding methods. Continuation Methods, H.J.Wacker (ed), Academic Press (1978) 1–35.

    Google Scholar 

  48. WALTHER, H.O.: A theorem on the amplitudes of periodic solutions of delay equations with applications to bifurcation. J. Diff. Eq. 29 (1978) 396–404.

    Article  MathSciNet  MATH  Google Scholar 

  49. WATSON, L.T.: A globally convergent algorithm for computing fixed points of C2 maps. Appl. Math. Comp. 5 (1979) 297–311.

    Article  MATH  Google Scholar 

  50. WATSON, L.T.: An algorithm that is globally convergent with probability one for a class of nonlinear two-point boundary value problems. SIAM J. Numer. Anal. 16 (1979) 394–401.

    Article  MathSciNet  MATH  Google Scholar 

  51. WATSON, L.T. and FENNER, D.: Algorithm 555: Chow-Yorke algorithm for fixed points or zeros of C2 maps. ACM Transactions on Mathematical Software, Vol. 6 (1980) 252–259.

    Article  MATH  Google Scholar 

  52. WATSON, L.T., LI, T.Y. and WANG, C.Y.: The elliptic porous slider-a homotopy method. J. Appl. Mech. 45 (1978) 435–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eugene L. Allgower Klaus Glashoff Heinz-Otto Peitgen

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Georg, K. (1981). Numerical integration of the Davidenko equation. In: Allgower, E.L., Glashoff, K., Peitgen, HO. (eds) Numerical Solution of Nonlinear Equations. Lecture Notes in Mathematics, vol 878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0090680

Download citation

  • DOI: https://doi.org/10.1007/BFb0090680

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10871-9

  • Online ISBN: 978-3-540-38781-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics