Skip to main content

Discrete correction methods for operator equations

  • Conference paper
  • First Online:
Numerical Solution of Nonlinear Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 878))

Abstract

A numerical method is developed for approximating the exact solution of an operator equation on a certain finite grid to within a desired tolerance. The method incorporates discretizations which admit asymptotic expansions of the error, mesh refinement strategies and discrete Newton methods. An algorithm is given in which essentially the largest adequate mesh size is used. A homotopy method for obtaining good starting values for a Newton-type method applied to a coarse grid discretization and the connection that our approach has with multigrid methods are discussed. Numerical examples for two-point boundary value problems and elliptic boundary value problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Allgower, E.L. and Georg, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations, SIAM Review, 22 (1980)

    Google Scholar 

  2. Allgower, E.L. and Jeppson, M.M.: The approximation of solutions of nonlinear elliptic boundary value problems with several solutions, Springer Lecture Notes in Mathematics, 333, 1–20 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  3. Allgower, E.L. and Mc Cormick, S.F.: Newton's method with mesh refinements for numerical solution of nonlinear boundary value problems, Numerische Math., 29, 237–260 (1978).

    Article  MathSciNet  Google Scholar 

  4. Allgower, E.L., McCormick, S.F., and Pryor, D.V.: A general mesh independence principle for Newtons method applied to second order bondary value problems, to appear in Computing.

    Google Scholar 

  5. Bers, L.: On mildly-nonlinear partial differential equations of elliptic type, J.Res.Nat.Bur. Standards, 51, 229–236 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  6. Böhmer, K.: Discrete Newton methods and Iterated defect corrections, I.General theory, II. Proofs and applications to initial and boundary value problems, submitted to Numer.Math.

    Google Scholar 

  7. Böhmer, K.: High order difference methods for quasilinear elliptic boundary value problems on general regions, University of Wisconssin Madison MRC Report.

    Google Scholar 

  8. Böhmer, K.: Asymptotic expansions for the discretization error in linear elliptic boundary value problems on general regions, to appear in Math.Zeitschrift.

    Google Scholar 

  9. Böhmer, K., Fleischmann, H.-J.: Self-adaptive discrete Newton methods for Runge-Kutta-methods, to appear in ISNM, Basel 1979/80.

    Google Scholar 

  10. Brandt, A.: Multi-level adaptive solutions to boundary value problems, Math.Comp. 31, 333–390 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  11. Brandt, A.: Multi-level adaptive techniques (MLAT) for partial differential equations, Mathematical Software III, Academic Press, New York, 277–318, (1977).

    MATH  Google Scholar 

  12. Chow, S.N., Mallet-Paret, J., and Yorke, J.: Finding zeros of maps: Homotopy methods that are constructive with probability one, Math.Comp. 32, 887–899 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  13. Daniel, J.W. and Martin, A.J.: Numerov's method with deferred corrections for two-point boundary value problems, SIAM J.Num.Anal., 14, 1033–1050 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  14. Fox, L., and Goodwin, F.T.: Some new methods for the numerical integration of ordinary differential equations. Proc.Camb. Phil. Soc. 45, 373–388 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  15. Frank, R.: Schätzungen des globalen Diskretisierungsfehlers bei Runge-Kutta-Methoden, ISNM 27, 45–70 (1975).

    MATH  Google Scholar 

  16. Frank, R.: The method of iterated defect-correction and its application to two-point boundary value problems, Part I., Numer. Math. 25, 409–419 (1976), Part II, Numer. Math. 27, 407–420 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  17. Frank, R., Hertling, J., and Ueberhuber, C.W.: An extension for the applicability of iterated deferred corrections Math. Comp. 31, 907–915 (1977).

    MathSciNet  MATH  Google Scholar 

  18. Frank, R., Hertling, J., and Ueberhuber, C.W.: Iterated defect correction based on estimates of the local discretization error, Report Nr. 18/76 des Instituts für Numerische Mathematik, Technische Universität Wien (1976).

    Google Scholar 

  19. Frank, R., and Ueberhuber, C.W.: Iterated defect correction of the efficient solution of systems of ordinary differential equations, EIT 17, 146–159 (1977).

    MathSciNet  MATH  Google Scholar 

  20. Georg, K.: A simplicial algorithm with applications to optimization, variational inequalities and boundary value problems, to appear in Proceedings of Symposium on Fixed Point Algorithms and Complementarity, Southampton, England, 1979.

    Google Scholar 

  21. Jürgens, H., Peitgen, H.-O., and Saupe, D.: Topological perturbations in the numerical study of nonlinear eigenvalue and bifurcation problems, in Proceedings of Symposium on Analysis and Computation of Fixed Points, Madison, Wis., 1979, Academic Press, New York ed. S.M. Robinson 1980, 139–181.

    Chapter  Google Scholar 

  22. Keller, H.B.: Accurate difference methods for nonlinear two point boundary value problems, SIAM J. Numer.Anal. 11, 305–320 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  23. Keller, H.B.: Numerical methods for two point boundary value problems, Blaisdell, Waltham, Mass. 1968.

    MATH  Google Scholar 

  24. Keller, H.B. and Peryra, V.: Difference methods and deffered corrections for ordinary boundary value problems, SIAM J. Num.Anal., 16, 241–259 (1979).

    Article  Google Scholar 

  25. Kellogg, R.B., Li, T.Y., and Yorke, J.: A constructive proof of the Brouwer fixed point theorem and computational results, SIAM J. Num.Anal. 4, 473–483 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  26. McCormick, S.F.: Multigrid methods; an alternate view, Lawrence Livermore Laboratory Reports, 1979.

    Google Scholar 

  27. Peitgen, H.-O. and Prüfer, M.: The Leray Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems, Funct.Diff. Equat. and Approx. of Fixed Pts., Springer L.N. 730(1980) 326–409

    MathSciNet  MATH  Google Scholar 

  28. Pereyra, V.L.: Iterated deferred corrections for nonlinear operator equations, Numer.Math. 10, 316–323 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  29. Pereyra, V., Proskurowsky, W., and Widlund, O.: High order fast Laplace solvers for the Dirichlet problem on general regions, Math. Comp. 31, 1–16 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  30. Rheinboldt, W.: Solution field of nonlinear equations and continuation methods, Technical Report ICMA-79-04, March 1979.

    Google Scholar 

  31. Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with applications to the stresses in a masonry dam, Philos. Trans.Roy. Soc. London Ser.A, 210, 307–357 (1910).

    Article  Google Scholar 

  32. Simpson, R.B.: Finite difference methods for mildly nonlinear eigenvalue problems, SIAM J. Num.Anal. 8, 190–211 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  33. Stetter, H.J.: Asymptotic expansions for the error of discretization algorithms for nonlinear functional equations, Numer. Math. 7, 18–31 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  34. Stetter, H.J.: Analysis of dicretization methods for ordinary differential equations, Springer-Verlag, Berlin-Heidelberg-New York, 1973.

    Book  Google Scholar 

  35. Stetter, H.J.: The defect correction principle and discretization methods, Numer.Math. 29, 425–443 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  36. Wasow, W.: Discrete approximations to elliptic differential equations, Z. Angew.Math. Phys. 6, 81–97 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  37. Watson, L.T.: An algorithm that is globally convergent with probability one for a class of nonlinear two-point boundary value problems, SIAM J. Num.Anal. (1979).

    Google Scholar 

  38. Zadunaisky, P.E.: A method for the estimation of errors propagated in the numerical solution of a system of ordinary differential equations, in "The theory of orbits in the solar system and in stellar systems" Proc. of Intern. Astronomical Union, Symp. 25, Thessaloniki, Ed. G. Contopoulos, 1964.

    Google Scholar 

  39. Zadunaisky, P.E.: On the accuracy in the numerical computation of orbits, in "Periodic Orbits, Stability and Resonances", Ed. G.E.O. Giacaglia, Dordrecht-Holland, 216–227 (1970).

    Google Scholar 

  40. Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations, Numer. Math. 27, 21–40 (1976).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eugene L. Allgower Klaus Glashoff Heinz-Otto Peitgen

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Allgower, E.L., Böhmer, K., Mc Cormick, S. (1981). Discrete correction methods for operator equations. In: Allgower, E.L., Glashoff, K., Peitgen, HO. (eds) Numerical Solution of Nonlinear Equations. Lecture Notes in Mathematics, vol 878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0090676

Download citation

  • DOI: https://doi.org/10.1007/BFb0090676

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10871-9

  • Online ISBN: 978-3-540-38781-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics