Skip to main content

Evaluation of reconstruction algorithms

  • Applications
  • Conference paper
  • First Online:
Mathematical Methods in Tomography

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1497))

Abstract

We present a methodology which allows us to experimentally optimize an image reconstruction method for a specific medical task and to evaluate the relative efficacy of two reconstruction methods for a particular task in a manner which meets the high standards set by the methodology of statistical hypothesis testing. We illustrate this by comparing, in the area of Positron Emission Tomography (PET), a Maximum A posteriori Probability (MAP) algorithm with a method which maximizes likelihood and with two variants of the filtered backprojection method. We find that the relative performance of techniques is extremely task dependent, with the MAP method superior to the others from the point of view of pointwise accuracy, but not from the points of view of two other PET-related figures of merit. In particular, we find that, in spite of the very noisy appearance of the reconstructed images, the maximum likelihood method outperforms the others from the point of view of estimating average activity in individual neurological structures of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Alavi, R. Dann, J. Chawluk, J. Alavi, M. Kushner, and M. Reivich, Positron emission tomography imaging of regional cerebral glucose metabolism, Sem. Nucl. Med., 16 (1986), pp. 2–34.

    Article  CAS  Google Scholar 

  2. H. Barrett, Objective assessment of image quality: effects of quantum noise and object variability, J. Opt. Soc. Am. A, 7 (1990), pp. 1266–1278.

    Article  CAS  PubMed  Google Scholar 

  3. T. Budinger, G. Gullberg, and R. Huesman, Emission computed tomography, in Image Reconstruction from Projections: Implementation and Applications, G. Herman, ed., Springer Verlag, Berlin, 1979, pp. 147–246.

    Chapter  Google Scholar 

  4. Y. Censor and G. Herman, On some optimization techniques in image reconstruction from projections, Appl. Num. Math., 3 (1987), pp. 365–391.

    Article  Google Scholar 

  5. H. Fleming, Equivalence of regularization and truncated iteration in the solution of ill-posed image reconstruction problems, Lin. Algeb. Appl., 130 (1990), pp. 133–150.

    Article  Google Scholar 

  6. S. Geman and D. McClure, Statistical methods for tomographic image reconstruction, Bull. Int. Stat. Inst., LII-4 (1987), pp. 5–21.

    Google Scholar 

  7. R. Gordon, R. Bender, and G. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography, J. Theoret. Biol., 29 (1970), pp. 471–482.

    Article  CAS  Google Scholar 

  8. K. Hanson, Method of evaluating image-recovery algorithms based on task performance, J. Opt. Soc. Am. A, 7 (1990), pp. 1294–1304.

    Article  Google Scholar 

  9. T. Hebert, Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images, Phys. Med. Biol., 35 (1990), pp. 1221–1232.

    Article  Google Scholar 

  10. G. Herman, ed., Image Reconstruction from Projections: Implementation and Applications, Springer Verlag, Berlin, 1979.

    Google Scholar 

  11. ___, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.

    Google Scholar 

  12. ___, Special issue on computerized tomography, Proc. IEEE, 71 (1983), pp. 291–435. Guest Ed.

    Article  Google Scholar 

  13. G. Herman and A. Lent, A computer implementation of a Bayesian analysis of image reconstruction, Inf. and Control, 31 (1976), pp. 364–384.

    Article  Google Scholar 

  14. G. Herman, R. Lewitt, D. Odhner, and S. Rowland, SNARK89 — a programming system for image reconstruction from projections, Tech. Rep. MIPG160, Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, 1989.

    Google Scholar 

  15. G. Herman and D. Odhner, A numerical two-alternative-forced-choice (2AFC) evaluation of imaging methods, in Computer Applications to Assist Radiology, R. Arenson and R. Friedenberg, eds., Symposia Foundation, Carlsbad, CA, 1990, pp. 549–555.

    Google Scholar 

  16. G. Herman, D. Odhner, K. Toennies, and S. Zenios, A parallelized algorithm for image reconstruction from noisy projections, in Large-Scale Numerical Optimization, J. Coleman and Y. Li, eds., SIAM, Philadelphia, to appear.

    Google Scholar 

  17. G. Herman and K. Yeung, Evaluators of image reconstruction algorithms, Int. J. Imag. Syst. Techn., 1 (1989), pp. 187–195.

    Article  Google Scholar 

  18. E. Levitan and G. Herman, A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography, IEEE Trans. Med. Imag., 6 (1987), pp. 185–192.

    Article  CAS  Google Scholar 

  19. Z. Liang, Statistical models of a priori information for image processing: Neighboring correlation constraints, J. Opt. Soc. Amer. A, 5 (1988), pp. 2026–2031.

    Article  Google Scholar 

  20. R. Mould, Introduction to Medical Statistics, Adam Hilger, Bristol, England, 2nd ed., 1989.

    Google Scholar 

  21. L. Shepp and Y. Vardi, Maximum likelihood reconstruction in positron emission tomography, IEEE Trans. Med. Imag., 1 (1982), pp. 113–122.

    Article  CAS  Google Scholar 

  22. D. Snyder and M. Miller, The use of sieves to stabilize images produced with the EM algorithm for emission tomography, IEEE Trans. Nucl. Sci., 32 (1985), pp. 3864–3872.

    Article  Google Scholar 

  23. Y. Vardi, L. Shepp, and L. Kaufman, A statistical model for positron emission tomography, J. Amer. Statist. Assoc., 80 (1985), pp. 8–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herman, G.T., Odhner, D. (1991). Evaluation of reconstruction algorithms. In: Herman, G.T., Louis, A.K., Natterer, F. (eds) Mathematical Methods in Tomography. Lecture Notes in Mathematics, vol 1497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084520

Download citation

  • DOI: https://doi.org/10.1007/BFb0084520

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54970-3

  • Online ISBN: 978-3-540-46615-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics