Skip to main content

On an intrinsic bias measure

  • Conference paper
  • First Online:
Stability Problems for Stochastic Models

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1546))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Amari, Differential-Geometrical Methods in Statistics, Lect. Notes Stat., Springer, New York, 1985.

    Book  MATH  Google Scholar 

  2. C. Atkinson and A. F. S. Mitchell, Rao's distance measure, Sankhyà, 43 A (1981), pp. 345–365.

    MathSciNet  MATH  Google Scholar 

  3. O. E. Barndorff-Nielsen, Differential geometry in statistical inference, Lect. Notes, Inst. Math. Stat., Mayward, California, 10 (1987), pp. 95–161.

    Book  Google Scholar 

  4. O. E. Barndorff-Nielsen and P. Blaesild, Strings: mathematical theory and statistical examples, in: Proc. London Roy. Soc., 411 A (1987), pp. 155–176.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Burbea, Informative geometry of probability spaced, Expos. Math., 4 (1986), pp. 347–378.

    MathSciNet  MATH  Google Scholar 

  6. J. Burbea and J. M. Oller, The information metric for univariate linear elliptic models, Stat. & Decis., 6 (1988), pp. 209–221.

    MathSciNet  MATH  Google Scholar 

  7. J. Burbea and C. R. Rao, Entropy differential metric, distance and divergence measures in probability spaces: a unified approach, J. Mult. Anal., 12 (1982), pp. 575–596.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Chavel, Eigenvalues in Riemannian Geometry. Pure and applied mathematics, Acad. Press, Hayward, California, 1984.

    MATH  Google Scholar 

  9. R.A. Fisher, On the mathematical foundations of theoretical statistics, Phil. Trans. Roy. Soc., 222 A (1922), pp. 309–368.

    Article  MATH  Google Scholar 

  10. R. A. Fisher, Theory of statistical estimation, in: Proc. Camb. Phil. Soc., 22 (1925), pp. 700–725.

    Article  MATH  Google Scholar 

  11. N. J. Hicks, Notes of Differential Geometry, Van Nostrand, London, 1965.

    MATH  Google Scholar 

  12. P. E. Jupp and K. V. Mardia, An unified view of the theory of directional statistics, 1975–1988, Int. Stat. Rev., 57 (1989), pp. 261–294.

    Article  MATH  Google Scholar 

  13. M. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), pp. 509–541.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Kelker, Distribution theory of spherical distributions and a location-scale parameter generalization, Sankhyà, 32 A (1970), pp. 419–430.

    MathSciNet  MATH  Google Scholar 

  15. W. S. Kendall, Probability, convexity and harmonic maps with small image,: Proc. London Math. Soc., 61 (1990), pp. 371–406.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley, New York, 1969.

    MATH  Google Scholar 

  17. J. T. Kent, K. V. Mardia and J. M. Bibby, Multivariate Analysis, Acad. Press, London, 1979.

    MATH  Google Scholar 

  18. A. F. S. Mitchell and W. J. Krzanowski, The mahalanobis distance and elliptic distributions, Biometrika, 72 (1985), pp. 467–467.

    Article  MATH  Google Scholar 

  19. R. J. Muirhead, Aspects of Multivariate Statistical Theory, Wiley, New York, 1982.

    Book  MATH  Google Scholar 

  20. J. M. Oller, Information metric for extreme value and logistic probability distributions, Sankhyà, 49 A (1987), pp. 17–23.

    MathSciNet  MATH  Google Scholar 

  21. J. M. Oller, Statistical data analysis and inference, Elsevier Sci. Publ. B. V., North Holland, Amsterdam, 1989, pp. 41–58.

    Book  MATH  Google Scholar 

  22. J. M. Oller and C. M. Cuadras, Rao's distance for multinomial negative distributions, Sankhyà, 47 A (1985), pp. 75–83.

    MathSciNet  MATH  Google Scholar 

  23. R. J. Serfling, Aproximation Theorems in Mathematical Statistics, Wiley, New York, 1980.

    Book  Google Scholar 

  24. M. Spivak, A Comprehensive Introduction to Differential Geometry, Publ. Perish, Berkeley, 1979.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vladimir V. Kalashnikov Vladimir M. Zolatarev

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this paper

Cite this paper

Oller, J.M. (1993). On an intrinsic bias measure. In: Kalashnikov, V.V., Zolatarev, V.M. (eds) Stability Problems for Stochastic Models. Lecture Notes in Mathematics, vol 1546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084489

Download citation

  • DOI: https://doi.org/10.1007/BFb0084489

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56744-8

  • Online ISBN: 978-3-540-47645-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics