Skip to main content

Algorithms for rational discrete least squares approximation

Part II: Optimal polefree solution

  • Conference paper
  • First Online:
Optimization and Optimal Control

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 477))

  • 503 Accesses

Abstract

In this paper an algorithm for the computation of a locally optimal polefree solution to the discrete rational least squares problem under a mild regularity condition is presented. It is based on an adaptation of projection methods [8], [12], [13], [14], [18], [19] to the modified Gauß-Newton method [4], [10]. A special device makes possible the direct handling of the infinitely many linear constraints present in this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrodale, I. B.: Best Rational Approximation And Strict Quasi-Convexity, SIAM J. Numer. Anal. 10, (1973), 8–12.

    Article  MathSciNet  MATH  Google Scholar 

  2. Björck, Å.: Iterative Refinement Of Linear Least Squares Solutions II, BIT 8, (1968), 8–30.

    Article  MATH  Google Scholar 

  3. Björck, Å., Golub, G. H.: Iterative Refinement Of Linear Least Squares Solutions By Householder Transformation, BIT 7, (1967), 322–337.

    Article  Google Scholar 

  4. Braun, B.: Nichtlineare Gauß-Approximation, Lösungsverfahren und Kondition, mit Anwendung auf Exponential summenapproximation, Thesis, Mainz 1967.

    Google Scholar 

  5. Dietze, S., Schwetlick, H.: Über die Schrittweitenwahl bei Abstiegsverfahren zur Minimierung konvexer Funktionen, ZAMM 51, (1971), 451–454.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dunham, C. B.: Best Discrete Mean Rational Approximation, Aeq. Math. 11, (1974), 8–12.

    Article  MathSciNet  Google Scholar 

  7. Fiacco, A. V., McCormick, G. P.: Nonlinear Programming (Sequential Unconstrained Minimization Techniques), New York, London, Toronto, Sydney: J. Wiley (1968)

    MATH  Google Scholar 

  8. Goldfarb, D.: Extension Of Davidon's Variable Metric Method To Maximization Under Linear Inequality And Equality Constraints, SIAM J. Appl. Math. 17, (1969), 739–764.

    Article  MathSciNet  MATH  Google Scholar 

  9. Golub, G. H., Pereyra, V.: The Differentiation Of Pseudo-Inverses And Nonlinear Least Squares Problems Whose Variables Separate, SIAM J. Numer. Anal. 10, (1973), 413–432.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartley, H. O.: The Modified Gauß-Newton Method For The Fitting Of Nonlinear Regression Functions By Least Squares, Technometrics 3, (1961), 269–280.

    Article  MathSciNet  MATH  Google Scholar 

  11. Pomentale, T.: On Rational Least Squares Approximation, Num. Math. 12, (1968), 40–46.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rauch, S. W.: A Convergence Theory For A Class Of Nonlinear Programming Problems, SIAM J. Numer. Anal. 10, (1973), 207–228.

    Article  MathSciNet  MATH  Google Scholar 

  13. Rosen, J. B.: The Gradient Projection Method For Nonlinear Programming, Part I: Linear Constraints. SIAM J. Appl. Math. 8, (1960), 181–217.

    Article  MATH  Google Scholar 

  14. Rosen, J. B.: The Gradient Projection Method For Nonlinear Programming, Part II: Nonlinear Constraints. SIAM J. Appl. Math. 9, (1961), 514–532.

    Article  MATH  Google Scholar 

  15. Spellucci, P.: Algorithms For Rational Discrete Least Squares Approximation, Part I: Unconstrained Optimization. To be published.

    Google Scholar 

  16. Spellucci, P.: Über den Koeffizientenbereich gewisser positiver Polynome. To be published.

    Google Scholar 

  17. Spellucci, P.: Einige neue Ergebnisse auf dem Gebiet der diskreten rationalen Approximation, Thesis, Ulm 1972.

    Google Scholar 

  18. Stoer, J.: On The Numerical Solution Of Constrained Least Squares Problems, SIAM J. Numer. Anal. 8, (1971), 382–411.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zettl, G.: Ein Verfahren zum Minimieren einer Funktion bei eingeschränktem Variationsbereich der Parameter, Num. Math. 15, (1970), 415–432.

    Article  MathSciNet  MATH  Google Scholar 

  20. Zoutendijk, G.: Methods Of Feasible Directions: A Study In Linear And Nonlinear Programming, Amsterdam: Elsevier (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Spellucci, P. (1975). Algorithms for rational discrete least squares approximation. In: Bulirsch, R., Oettli, W., Stoer, J. (eds) Optimization and Optimal Control. Lecture Notes in Mathematics, vol 477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0079181

Download citation

  • DOI: https://doi.org/10.1007/BFb0079181

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07393-2

  • Online ISBN: 978-3-540-37591-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics