Skip to main content

Inversion in the unit sphere for powers of the Laplacian

  • Conference paper
  • First Online:
Ordinary Differential Equations and Operators

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1032))

Abstract

For a solution u of Δnu = 0, where Δ is the Laplacian in m-space and n is a positive integer, we establish a transformation through inversion in the unit sphere which transforms u into a solution v of Δnv = 0. For n = 1 this is the classical Kelvin transformation and for m = n = 2 this is the Michell transformation. Applications are given to spectral theory and oscillation theory.

Supported by NSF grant number MCS-8005811.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.D. Ahlbrandt, D.B. Hinton, and R.T. Lewis, The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory, J. Math. Anal. Appl., 81 (1981), 234–277.

    Article  MathSciNet  MATH  Google Scholar 

  2. _____, Transformations of second-order ordinary and partial differential operators, Proc. Royal Soc. Edinburgh, to appear.

    Google Scholar 

  3. W. Allegretto, Nonoscillation theory of elliptic equations of order 2n, Pacific J. Math. 64 (1976), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  4. _____, Finiteness criteria for the negative spectrum and nonoscillation theory for a class of higher order elliptic operators, in "Spectral Theory of Differential Operators", pp. 9–12, I.W. Knowles and R.T. Lewis editors, North Holland, New York, 1981.

    Google Scholar 

  5. _____, A Kneser theorem for higher order elliptic equations, Can. Math. Bull. 20 (1977), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Courant, and D. Hilbert, Methods of Mathematical Physics, Vol. II, (Wiley-Interscience, New York, 1962).

    MATH  Google Scholar 

  7. A. Devinatz, Essential self-adjointness of Schrödinger-type operators, J. of Functional Anal. 25 (1977), 58–69.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.J. Etgen, and R.T. Lewis, The oscillation of elliptic systems, Math.Nachr. 94 (1980), 43–50.

    Article  MathSciNet  MATH  Google Scholar 

  9. W.D. Evans, On the essential self-adjointness of powers of Schrödinger-type operators, Proc. Royal Soc. Edin. 79A (1977), 61–77.

    MATH  Google Scholar 

  10. P.R. Garabedian, Partial Differential Equations. (Wiley, New York, 1964).

    MATH  Google Scholar 

  11. R. Hadass, On the zeros of the solutions of the differential equation y(n)(z) + p(z)y(z) = 0. Pacific J. Math 31 (1969), 33–46.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Kalf, On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strong singular potential, J. Functional Anal. 10 (1972), 230–250.

    Article  MathSciNet  MATH  Google Scholar 

  13. _____, Self-adjointness for strongly singular potentials with a-|x|2 fall-off at infinity, Math. Z. 133 (1973), 249–255.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Kalf and J. Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in C 0 (Rn/{0}), J. Functional Anal. 10 (1972), 114–130.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Knowles, On essential self-adjointness for singular elliptic differential operators, Math. Ann. 227 (1977), 155–172.

    Article  MathSciNet  MATH  Google Scholar 

  16. _____, On essential self-adjointness for Schrödinger operators with wildly oscillating potentials, J. Math. Anal. Appl. 66 (1978), 574–585.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Kreith and C. Travis, Oscillation criteria for self-adjoint elliptic equations, Pacific J. Math. 41 (1972), 743–753.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformation, from Contributions to Analysis (Academic Press, New York, 1974).

    Google Scholar 

  19. J.H. Michell, The inversion of plane stress, Proc. London Math. Soc. 34 (1901), 134–142.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Müller-Pfeiffer, Kriterien für die Oszillation von elliptischen Differentialgleichungen höherer Ordnung, Math. Nachr. to appear.

    Google Scholar 

  21. E.S. Noussair, Oscillation of elliptic equations in general domains, Can. J. Math. 27 (1975), 1239–1245.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Riesz, Intégrales de Riemann-Liouville et Potentiels, Acta-Szeged 9 (1938), 1–42.

    MATH  Google Scholar 

  23. M. Schechter, On the spectra of singular elliptic operators, Mathematika 23 (1976), 107–115.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Sternberg and R.A. Eubanks, On the method of inversion in the two-dimensional theory of elasticity, Quarterly of Applied Math. 8 (1951), 392–395.

    MathSciNet  MATH  Google Scholar 

  25. W. Walter and H. Rhee, Entire solutions of Δpu = f(r,u). Proc. Royal Soc. Edinburgh 82A (1979), 189–192.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. N. Everitt R. T. Lewis

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Ahlbrandt, C.D., Hinton, D.B., Lewis, R.T. (1983). Inversion in the unit sphere for powers of the Laplacian. In: Everitt, W.N., Lewis, R.T. (eds) Ordinary Differential Equations and Operators. Lecture Notes in Mathematics, vol 1032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0076789

Download citation

  • DOI: https://doi.org/10.1007/BFb0076789

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12702-4

  • Online ISBN: 978-3-540-38689-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics