Skip to main content

Computational methods for stress wave propagation in nonlinear solid mechanics

  • Lectures
  • Conference paper
  • First Online:
Computational Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 461))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Herrmann and J. W. Nunziato, “Nonlinear Constitutive Equations,” Dynamic Response of Materials to Intense Impulsive Loading, Ed. P. C. Chou and A. K. Hopkins, Air Force Materials Laboratory, Wright Patterson AFB, Ohio, 1972.

    Google Scholar 

  2. W. Herrmann, “Nonlinear Stress Waves in Metals,” Wave Propagation in Solids, Ed. J. Miklowitz, The American Society of Mechanical Engineers, 1969.

    Google Scholar 

  3. G. E. Duvall, “Shock Waves and Equations of State”, Dynamic Response of Materials to Intense Impulsive Loading, Ed. P. C. Chou and A. K. Hopkins, Air Force Materials Laboratory, Wright Patterson AFB, Ohio, 1972.

    Google Scholar 

  4. W. Herrmann, “Constitutive Equations for Compaction of Porous Materials,”, Applied Mechanics Aspects of Nuclear Effects in Materials, Ed. C. C. Wan, The American Society of Mechanical Engineers, 1971.

    Google Scholar 

  5. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, “The Equation of State of Solids from Shock Wave Studies,” High Velocity Impact Phenomena, Ed. R. Kinslow, Academic Press, 1970.

    Google Scholar 

  6. J. W. Nunziato, E. K. Walsh, K. W. Schuler, and L. M. Barker, “Wave Propagation in Non-Linear Viscoelastic Solids,” Encyclopedia of Physics, Vol. VIa/4, Ed. S. Flüggee, Springer Verlag, 1974.

    Google Scholar 

  7. L. M. Barker, “Fine Structure of Compressive and Release Wave Shapes in Aluminum Measured by the Velocity Interferometer Technique,” Behavior of Dense Media Under High Dynamic Pressures, Gordon and Breach, New York, 1968.

    Google Scholar 

  8. K. W. Schuler, “Propagation of Steady Shock Waves in Polymethyl Methacrylate,” J. Mech. Phys. Solids, 18; 277 (1970).

    Article  Google Scholar 

  9. D. L. Hicks and D. B. Holdridge, “The CONCHAS Wavecode,” Sandia Laboratories, SC-RR-72 0451, September 1972.

    Google Scholar 

  10. R. Madden and T. S. Chang, “Stress Waves Resulting from Hypervelocity Impact,” in AIAA Hypervelocity Impact Conference, Cincinnati, Ohio, April 1969.

    Google Scholar 

  11. R. D. Richtmyer and K. W. Morton, “Difference Methods for Initial-Value Problems,” Interscience Publishers, New York, 1967.

    MATH  Google Scholar 

  12. J. von Neumann and R. Richtymer, “A Method for the Numerical Calculation of Hydro-dynamic Shocks,” J. Appl. Phys., 21; 232 (1950).

    Article  MathSciNet  Google Scholar 

  13. W. Herrmann and D. L. Hicks, “Numerical Analysis Methods,” Metallurgical Effects at High Strain Rates, Ed. R. W. Rhode, B. M. Butcher, J. R. Holland, and C. H. Karnes, Plenum Press, New York (1973).

    Chapter  Google Scholar 

  14. G. R. Fowles, “Attenuation of the Shock Wave Produced in a Solid by a Flying Plate,” J. Appl. Phys., 31; 655 (1960).

    Article  MathSciNet  Google Scholar 

  15. R. J. Lawrence, “WONDY Illa— A Computer Program for One-Dimensional Wave Propagation,” Sandia Laboratories, SC-DR-70-315, August 1970.

    Google Scholar 

  16. W. Herrmann, R. J. Lawrence, and D. S. Mason, “Strain Hardening and Strain Rate in One-Dimensional Wave Propagation Calculations,” Sandia Laboratories, SC-RR-70-471, November 1970.

    Google Scholar 

  17. W. Herrmann, “Equation of State of Crushable Distended Materials,”Sandia Laboratories, SC-RR-66-2678, March 1968.

    Google Scholar 

  18. B. M. Butcher, “Numerical Techniques for One-Dimensional Rate-Dependent Porous Material Compaction Calculations,” Sandia Laboratories, SC-RR-710112, April 1971.

    Google Scholar 

  19. J. W. Nunziato, K. W. Schuler, and D. B. Hayes, “Wave Propagation Calculations for Nonlinear Viscoelastic Solids,” Proceedings of the International Conference on Computational Methods in Nonlinear Mechanics, University of Texas, Austin, September 1974.

    Google Scholar 

  20. R. J. Lawrence, “A Nonlinear Viscoelastic Equation of State for use in Stress Propagation Calculations,” Sandia Laboratories, SLA-73-0635, September 1973.

    Google Scholar 

  21. R. J. Lawrence and D. S. Mason, “WONDY IV-A Computer Program for One-Dimensional Wave Propagation with Rezoning, Sandia Laboratories, SC-RR-71 0284, August 1971.

    Google Scholar 

  22. L. D. Bertholf and S. E. Benzley, “TOODY II— A Computer Program for Two Dimensional Wave Propagation,” Sandia Laboratories, SC-RR-68-41, November 1969.

    Google Scholar 

  23. B. J. Thorne and D. B. Holdridge, “The TOOREZ Lagrangian Rezonging Code,” Sandia Laboratories, SLA-73-1057, April 1974.

    Google Scholar 

  24. A. J. Chabai, R. J. Lawrence, and E. G. Young, “Elastic-Plastic Target Deformation Due to a High Speed Pulsed Water Jet Impact,” Sandia Laboratories, SLA-74-5227, March 1974.

    Google Scholar 

  25. M. L. Wilkins, “Calculation of Elastic-Plastic Flow,” Methods in Computational Physics, Vol. 3, Ed. B. Alder, S. Fernbach, and M. Rotenberg, Academic Press, New York (1964).

    Google Scholar 

  26. H. G. Kolsky, “A Method for the Numerical Solution of Transient Hydrodynamic Shock Problems in Two-Space Dimensions,” Los Alamos Scientific Laboratory LA-1867, September 1954.

    Google Scholar 

  27. W. Herrmann, “Comparison of Finite Difference Expressions Used in Lagrangian Fluid Flow Calculations,” Air Force Weapons Laboratory, WL-TR-64-104, November 1964.

    Google Scholar 

  28. R. Landshoff, “A Numerical Method for Treating Fluid Flow in the Presence of Shocks,” Los Alamos Scientific Laboratory, LA-1930, January 1955.

    Google Scholar 

  29. G. Maenchen and S. Sack, “The Tensor Code,” Methods in Computational Physics, Vol. 3, Ed. B. Alder, S. Fernbach, and M. Rotenberg, Academic Press, New York (1964).

    Google Scholar 

  30. A. M. Winslow, “Equipotential Zoning of Two Dimensional Meshes,” Lawrence Radiation Laboratory, UCRL-7312, June 1963.

    Google Scholar 

  31. R. D. Richtmyer, “A Survey of Difference Methods for Non-Steady Fluid Dynamics,” National Center for Atmospheric Research, TN 63-2 (1962).

    Google Scholar 

  32. P. J. Roach, Computational Fluid Mechanics, Hermosa Publishers, Albuquerque (1972).

    Google Scholar 

  33. S. L. Thompson, “Preliminary Report on the CSQ Code,” Sandia Laboratories, SAND-74-0122, September 1974.

    Google Scholar 

  34. W. E. Johnson, “TOIL: A Two-Material Version of the Oil Code,” General Atomic Report, GAMD-80-75, July 1967.

    Google Scholar 

  35. L. J. Hageman and J. M. Walsh, “HELP, A Multi-Material Eulerian Program for Compressible Fluid and Elastic-Plastic Flows in Two Space Dimensions and Time,” Systems, Science and Software, 3SR-350, August 1970.

    Google Scholar 

  36. S. L. Thompson, “Improvements in the CHART D Radiation-Hydrodynamic Code III Revised Analytic Equation of State,” Sandia Laboratories, SC-RR-0714, March (1972).

    Google Scholar 

  37. H. L. Selberg, “Transient Compression Waves from Spherical and Cylindrical Cavities,” Arkiv för Fysik, 5; 97 (1952).

    MathSciNet  MATH  Google Scholar 

  38. F. G. Blake, Jr., “Spherical Wave Propagation in Solid Media,” J. Accoust. Soc. Am., 24; 211 (1952).

    Article  Google Scholar 

  39. L. D. Bertholf and C. H. Karnes, “Axisymmetric Elastic-Plastic Wave Propagation in 6061-T6 Aluminum Bars of Finite Length,” J. Appl. Mech., 36; 533 (1969).

    Article  Google Scholar 

  40. F. E. Hauser, J. A. Simmons and J. E. Dorn, “Strain-Rate Effects in Plastic Wave Propagation,” Response of Metals to High Velocity Deformation, Ed. P. G. Shewmon and V. F. Zackay, Interscience Publishers, N.Y. (1960).

    Google Scholar 

  41. L. D. Bertholf, “Feasibility of Two Dimensional Numerical Analysis of the Split Hopkinson Pressure Bar System,” J. Appl. Mech., 41; 137 (1974).

    Article  Google Scholar 

  42. L. W. Kennedy and O. E. Jones, “Longitudinal Wave Propagation in a Circular Bar Loaded Suddenly by a Radially Distributed End Stress,” J. Appl. Mech. 36; 470 (1969).

    Article  MATH  Google Scholar 

  43. L. D. Bertholf, “Numerical Solution for Two-Dimensional Elastic Wave Propagation in Finite Bars,” J. Appl. Mech., 34; 725 (1967).

    Article  MATH  Google Scholar 

  44. L. D. Bertholf and C. H. Karnes, “Two Dimensional Analysis of the Split Hopkinson Pressure Bar System,” J. Mech. Phys. Solids, to be published (1974).

    Google Scholar 

  45. W. N. Sharpe, Private Communication, Michigan State University, August 1971.

    Google Scholar 

  46. D. A. Shockey, D. R. Curran, and P. J. DeCarli, “Damage in Steel Plates from Hypervelocity Impact: Part I—Physical Changes and Effects of Projectile Material,” J. Appl. Phys., to be published (1974).

    Google Scholar 

  47. L. D. Bertholf, et al., “Damage in Steel Plates from Hypervelocity Impact: Part II—Numerical Results and Spall Measurements,” J. Appl. Phys., to be published (1974).

    Google Scholar 

  48. M. M. Widner and S. L. Thompson, “Calculations of Anode Witness Plate Damage Due to Pinched Relativistic Electron Beams,” J. Appl. Phys., to be published (1974).

    Google Scholar 

  49. M. J. Berger and S. M. Seltzer, “ETRAN Monte Carlo Code System for Electron and Photon Transport Through Extended Media,” Radiation Shielding Information Center, Computer Code Collection, Oak Ridge National Laboratory, Report CCC-107, June 1968. Also available in J. A. Halbleib, Sr. and W. H. Vandevender, Sandia Laboratories, SC-DR-70-654, December 1970.

    Google Scholar 

  50. W. F. Noh, “CEL: A Time-Dependent, Two Space Dimensional Coupled Eulerian-Lagrange Code,” Methods in Computational Physics, Vol. 3, Ed. B. Alder, S. Fernbach, and M. Rotenberg, Academic Press, New York (1964).

    Google Scholar 

  51. F. H. Harlow, “The Particle-in-Cell Computing Method for Fluid Dynamics,” Methods in Computational Physics, Vol. 3, Ed. B. Alder, S. Fernbach, and M. Rotenberg, Academic Press, New York (1964).

    Google Scholar 

  52. J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, “The MAC Method,” Los Alamos Scientific Laboratory, Report No. LA-3475 (1966).

    Google Scholar 

  53. J. G. Trulio, “Theory and Structure of the AFTON Code,” Air Force Weapons Laboratory, AFWL-TR-67-27, June 1966.

    Google Scholar 

  54. C. W. Hirt, A. A. Amsden, and J. L. Cook, “An Arbitrary Lagrangian Eulerian Computing Method for All Flow Speeds,” J. Comp. Phys., 14; 227 (1974).

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

J. Tinsley Oden

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag

About this paper

Cite this paper

Herrmann, W., Bertholf, L.D., Thompson, S.L. (1975). Computational methods for stress wave propagation in nonlinear solid mechanics. In: Oden, J.T. (eds) Computational Mechanics. Lecture Notes in Mathematics, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0074151

Download citation

  • DOI: https://doi.org/10.1007/BFb0074151

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07169-3

  • Online ISBN: 978-3-540-37503-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics