Skip to main content

Models of disordered media: Some new results, including some new connections between composite-media, fluid-state, and random-flight theories

  • Conference Lectures
  • Conference paper
  • First Online:
The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1035))

Abstract

Some new theoretical results on the microstructure of models of two-phase disordered media are given, as well as the new quantitative bounds on the thermal conductivity that follow for one such model (randomly centered spherical inclusions). A second set of results is then given for random flights, including random flights with hit expectancy prescribed in a unit ball around the flight origin. Finally, some interesting correspondences are demonstrated, via the Ornstein-Zernike equation, between random-flight results, liquid-state results and percolation-theory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Torquato, Ph.D. Thesis in Mechanical Engineering, State University of New York at Stony Brook, December 1980.

    Google Scholar 

  2. S. Torquato and G. Stell, J. Chem. Phys. 77, 1017 (1982), ibid. 78, 3262 (1983); 78, in press (1983).

    Article  MathSciNet  Google Scholar 

  3. H.L. Weissberg and S. Prager, Phys. of Fluids, 5, 1390 (1962).

    Article  ADS  Google Scholar 

  4. J.K. Percus and G. Yevick, Phys. Rev. 110, 1 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  5. J.K. Percus and G. Yevick, Phys. Rev. 136, 290 (1964); J.L. Lebowitz and J.K. Percus, Phys. Rev. 144, 251 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  6. L. Verlet and J.J. Weis, J. Chem. Phys. 5, 939 (1972).

    Google Scholar 

  7. Z. Hashin and S. Shtrikman, J. Applied Phys. 33, 3125 (1962).

    Article  ADS  Google Scholar 

  8. S. Prager, Physica 29, 129 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  9. W.F. Brown, Trans. Rheology Soc., Pt. 9, No. 1, 357 (1965).

    Article  ADS  Google Scholar 

  10. M. Beran, Il Nuovo Cimento 38, 771 (1965).

    Article  Google Scholar 

  11. A.L. DeVera and W. Streider, J. Phys. Chem. 81, 1783 (1977).

    Article  Google Scholar 

  12. D.W. Sundstrom and Y. Lee, J. Appl. Polym. Soc. 16, 3159 (1972).

    Article  Google Scholar 

  13. J.E. Mayer and E. Montroll, J. Chem. Phys., 9, 2 (1941); J.E. Mayer, J. Chem. Phys. 15, 187 (1947) Eqs. (50) and (53).

    Article  ADS  Google Scholar 

  14. J.G. Kirkwood and Z.W. Salsburg, Discussions Faraday Soc. 15, 28 (1953). The KS set of equations is actually a special case of one due to Mayer [J. Chem. Phys. 15, 187 (1947), Eq. (54′)]. See also S. Baer and J.L. Lebowitz, J. Chem. Phys., 40, (1964).

    Article  Google Scholar 

  15. This was already noted in ref. [2] in regard to (2.1); the author has subsequently verified that it is equally true for (2.2).

    Google Scholar 

  16. We use an approach initiated by Boltzmann and developed by the author in "Boltzmann's Method of Evaluating and Using Molecular Distribution Functions", G. Stell, PIB Report (Aug. 1966).

    Google Scholar 

  17. See L. Blum and G. Stell, J. Chem. Phys. 71, 42 (1979), 72, 2212 (1980); J.J. Salacuse and G. Stell, J. Chem. Phys. 77, 3714 (1982).

    Article  ADS  Google Scholar 

  18. R.J. Baxter, Aust. J. Phys. 21, 563 (1968).

    Article  ADS  Google Scholar 

  19. Y.C. Chiew and E.D. Glandt, J. Phys. A, 1983 (in press).

    Google Scholar 

  20. P.T. Cummings and G. Stell, "Random Flights in Euclidean Space I. General Analysis and Results for Flights with Prescribed Hit Expectance Density about the Origin", SUSB CEAS Report #415, (February 1983).

    Google Scholar 

  21. T.H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  22. H.W. Lewis and G.H. Wannier, Phys. Rev. 88, 682 (1952); Phys. Rev. 90, 1131 (1953).

    Article  ADS  Google Scholar 

  23. G. Stell, J.L. Lebowtiz, S. Baer and W. Theumann, J. Math. Phys. 7, 1532 (1966).

    Article  ADS  Google Scholar 

  24. See, for example, A.A. Maradudin, E.W. Montroll, G.H. Weiss, R. Herman, and H.W. Milnes, "Green's Functions for Monatomic Cubic Lattices" (Academie Royale de Belgique, Bruxelles, 1960) and G. Joyce, in "Phase Transitions and Critical Phenomena", Volume 2, ed. by C. Domb and M.S. Green (Academic Press, London, 1972). A number of other excellent surveys of results on random walks and related problems on periodic lattices have been written by E.W. Montroll. See, for example, E.W. Montroll, in "Applied Combinatorial Mathematics", ed. by E.F. Beckenback (Wiley, New York, 1964) and E.W. Montroll, J. Soc. Indust. Appl. Math. 4, 241 (1956). In this connection, see also the beautiful article by P.W. Kasteleyn, in "Graph Theory and Theoretical Physics", ed. by F. Harary (Academic Press, London, 1967). We should also note the following two classic general studies of lattice walks: F. Spitzer, "Principles of Random Walk" (Van Nostrand, Princeton, 1964); M.N. Barber and B.W. Ninham, "Random and Restricted Walks" (Gordon and Breach, New York, 1970).

    Google Scholar 

  25. G. Stell, Phys. Rev. 184, 135 (1969).

    Article  ADS  Google Scholar 

  26. L.S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914). Equation (3.1) can be thought of as defining c(r,ρ) in terms of h(r,ρ). In the statistical theory of fluids one has an exact (but intractable) second independent relation among c, h, and the pair potential that has no counter-part in random flight theory. For quantitative fluid results, the second relation is typically replaced by a relatively simple approximation, such as Eq. (3.23).

    Google Scholar 

  27. B. Noble, "Methods Based on the Wiener-Hopf Technique" (Pergamon Press, London, 1958).

    MATH  Google Scholar 

  28. A. Coniglio, U. De Angelis, and A. Forlani, J. Phys. A 10, 1123 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. D. Hughes B. W. Ninham

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Stell, G. (1983). Models of disordered media: Some new results, including some new connections between composite-media, fluid-state, and random-flight theories. In: Hughes, B.D., Ninham, B.W. (eds) The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation. Lecture Notes in Mathematics, vol 1035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0073267

Download citation

  • DOI: https://doi.org/10.1007/BFb0073267

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12707-9

  • Online ISBN: 978-3-540-38693-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics